1
|
Parkhomenko YM, Vovk AI, Protasova ZS, Pylypchuk SY, Chorny SA, Pavlova OS, Mejenska OA, Chehovska LI, Stepanenko SP. Thiazolium salt mimics the non-coenzyme effects of vitamin B 1 in rat synaptosomes. Neurochem Int 2024; 178:105791. [PMID: 38880231 DOI: 10.1016/j.neuint.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Long-term studies have confirmed a causal relationship between the development of neurodegenerative processes and vitamin B1 (thiamine) deficiency. However, the biochemical mechanisms underlying the high neurotropic activity of thiamine are not fully understood. At the same time, there is increasing evidence that vitamin B1, in addition to its coenzyme functions, may have non-coenzyme activities that are particularly important for neurons. To elucidate which effects of vitamin B1 in neurons are due to its coenzyme function and which are due to its non-coenzyme activity, we conducted a comparative study of the effects of thiamine and its derivative, 3-decyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium chloride (DMHT), on selected processes in synaptosomes. The ability of DMHT to effectively compete with thiamine for binding to thiamine-binding sites on the plasma membrane of synaptosomes and to participate as a substrate in the thiamine pyrophosphokinase reaction was demonstrated. In experiments with rat brain synaptosomes, unidirectional effects of DMHT and thiamine on the activity of the pyruvate dehydrogenase complex (PDC) and on the incorporation of radiolabeled [2-14C]pyruvate into acetylcholine were demonstrated. The observed effects of thiamine and DMHT on the modulation of acetylcholine synthesis can be explained by suggesting that both compounds, which interact in cells with enzymes of thiamine metabolism, are phosphorylated and exert an inhibitory/activating effect (concentration-dependent) on PDC activity by affecting the regulatory enzymes of the complex. Such effects were not observed in the presence of structural analogues of thiamine and DMHT without a 2-hydroxyethyl substituent at position 5 of the thiazolium cycle. The effect of DMHT on the plasma membrane Ca-ATPase was similar to that of thiamine. At the same time, DMHT showed high cytostatic activity against neuroblastoma cells.
Collapse
Affiliation(s)
- Yu M Parkhomenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine.
| | - A I Vovk
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, 02094, Ukraine
| | - Z S Protasova
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S Yu Pylypchuk
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S A Chorny
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - O S Pavlova
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - O A Mejenska
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - L I Chehovska
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - S P Stepanenko
- Department of Vitamins and Coenzymes Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Regasini LO. Biological Membranes as Targets for Natural and Synthetic Compounds. MEMBRANES 2022; 12:1172. [PMID: 36557079 PMCID: PMC9781872 DOI: 10.3390/membranes12121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Biological membranes are responsible for all types of regulation and compound transfer, as well as information flow between and within eukaryotic and prokaryotic cells [...].
Collapse
Affiliation(s)
- Luis Octavio Regasini
- Head of Laboratory of Antibiotics and Chemotherapeutics, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
| |
Collapse
|
3
|
Barbosa DJ, Capela JP, Ferreira LM, Branco PS, Fernandes E, de Lourdes Bastos M, Carvalho F. Ecstasy metabolites and monoamine neurotransmitters upshift the Na+/K+ ATPase activity in mouse brain synaptosomes. Arch Toxicol 2022; 96:3279-3290. [PMID: 36104498 DOI: 10.1007/s00204-022-03370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|