Gikunda MN, Harerimana F, Mangum JM, Rahman S, Thompson JP, Harris CT, Churchill HOH, Thibado PM. Array of Graphene Variable Capacitors on 100 mm Silicon Wafers for Vibration-Based Applications.
MEMBRANES 2022;
12:membranes12050533. [PMID:
35629859 PMCID:
PMC9147771 DOI:
10.3390/membranes12050533]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
Highly flexible, electrically conductive freestanding graphene membranes hold great promise for vibration-based applications. This study focuses on their integration into mainstream semiconductor manufacturing methods. We designed a two-mask lithography process that creates an array of freestanding graphene-based variable capacitors on 100 mm silicon wafers. The first mask forms long trenches terminated by square wells featuring cone-shaped tips at their centers. The second mask fabricates metal traces from each tip to its contact pad along the trench and a second contact pad opposite the square well. A graphene membrane is then suspended over the square well to form a variable capacitor. The same capacitor structures were also built on 5 mm by 5 mm bare dies containing an integrated circuit underneath. We used atomic force microscopy, optical microscopy, and capacitance measurements in time to characterize the samples.
Collapse