1
|
Chambers R, Rajput BS, Scofield GB, Reindel J, O’Shea K, Li RJ, Simkovsky R, Mayfield SP, Burkart MD, Cai S. Mechanically Robust and Biodegradable Electrospun Membranes Made from Bioderived Thermoplastic Polyurethane and Polylactic Acid. ACS APPLIED POLYMER MATERIALS 2024; 6:12528-12537. [PMID: 39479343 PMCID: PMC11519836 DOI: 10.1021/acsapm.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Petroleum-based plastic waste plagues the natural environment, but plastics solve many high-performance solutions across industries. For example, porous polymer membranes are used for air filtration, advanced textiles, energy, and biomedical applications. Sustainable and biodegradable Bioplastic membranes can compete with nonrenewable materials in strength, durability, and functionality but biodegrade under select conditions after disposal. Membranes electrospun using a blend of bioderived thermoplastic polyurethane (TPU) and polylactic acid (PLA) perform effectively under tensile and cyclic loading, act adequately as an air filter media, and biodegrade in a home-compost environment, with the aliphatic formulation of TPU showing greater biodegradability compared to the formulation containing aromatic moieties. Blending TPU with PLA dramatically increases the strain at break of the PLA membrane, while the addition of PLA in TPU stiffens the material considerably. Measurements of the pressure drop and filtration efficiency deem this electrospun membrane an effective air filter. This membrane provides a solution to the need for quality air filtration while decreasing the dependence on petroleum feedstocks and addressing the issue of plastic disposal through biodegradation.
Collapse
Affiliation(s)
- Robert
J. Chambers
- Material
Science and Engineering Department, University
of California, San Diego, La Jolla, California 92093, United States
| | - Bhausaheb S. Rajput
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Gordon B. Scofield
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Jaysen Reindel
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Katherine O’Shea
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Richey Jiang Li
- Material
Science and Engineering Department, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ryan Simkovsky
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Stephen P. Mayfield
- Department
of Molecular Biology, California Center for Algae Biotechnology, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Shengqiang Cai
- Material
Science and Engineering Department, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Ketoja JA, Saurio K, Rautkoski H, Kenttä E, Tanaka A, Koponen AI, Virkajärvi J, Heinonen K, Kostamo K, Järvenpää A, Hyry N, Heikkilä P, Hankonen N, Harlin A. Design of biodegradable cellulose filtration material with high efficiency and breathability. Carbohydr Polym 2024; 336:122133. [PMID: 38670771 DOI: 10.1016/j.carbpol.2024.122133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Using respiratory protective equipment is one of the relevant preventive measures for infectious diseases, including COVID-19, and for various occupational respiratory hazards. Because experienced discomfort may result in a decrease in the utilization of respirators, it is important to enhance the material properties to resolve suboptimal usage. We combined several technologies to produce a filtration material that met requirements set by a cross-disciplinary interview study on the usability of protective equipment. Improved breathability, environmental sustainability, and comfort of the material were achieved by electrospinning poly(ethylene oxide) (PEO) nanofibers on a thin foam-formed fabric from regenerated cellulose fibers. The high filtration efficiency of sub-micron-sized diethylhexyl sebacate (DEHS) aerosol particles resulted from the small mean segment length of 0.35 μm of the nanofiber network. For a particle diameter of 0.6 μm, the filtration efficiency of a single PEO layer varied in the range of 80-97 % depending on the coat weight. The corresponding pressure drop had the level of 20-90 Pa for the airflow velocity of 5.3 cm/s. Using a multilayer structure, a very high filtration efficiency of 99.5 % was obtained with only a slightly higher pressure drop. This opens a route toward designing sustainable personal protective media with improved user experience.
Collapse
Affiliation(s)
- Jukka A Ketoja
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland.
| | - Kaisa Saurio
- Faculty of Social Sciences, Tampere University, Finland
| | - Hille Rautkoski
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Eija Kenttä
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Atsushi Tanaka
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Antti I Koponen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Jussi Virkajärvi
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Kimmo Heinonen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Katri Kostamo
- Faculty of Social Sciences, Tampere University, Finland
| | - Anastasia Järvenpää
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Niina Hyry
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Ali Harlin
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
3
|
Zhou Z, Wang D, Pan Z, You T, Xu G, Liang Y, Tang M. Bioinspired Structures Made of Silicone Nanofilaments for Upcycling Waste Masks to Reusable N95 Respirators. NANO LETTERS 2024; 24:4415-4422. [PMID: 38577835 DOI: 10.1021/acs.nanolett.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The increasing demand for personal protective equipment such as single-use masks has led to large amounts of nondegradable plastic waste, aggravating economic and environmental burdens. This study reports a simple and scalable approach for upcycling waste masks via a chemical vapor deposition technique, realizing a trichome-like biomimetic (TLB) N95 respirator with superhydrophobicity (water contact angle ≥150°), N95-level protection, and reusability. The TLB N95 respirator comprising templated silicone nanofilaments with an average diameter of ∼150 nm offers N95-level protection and breathability comparable to those of commercial N95 respirators. The TLB N95 respirator can still maintain its N95-level protection against particulate matter and viruses after 10 disinfection treatment cycles (i.e., ultraviolet irradiation, microwave irradiation, dry heating, and autoclaving), demonstrating durable reusability. The proposed strategy provides new insight into upcycle waste masks, breaking the existing design and preparation concept of reusable masks.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Di Wang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhengyuan Pan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tianle You
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Guilong Xu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
4
|
Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. APPLIED MATERIALS TODAY 2023; 32:101833. [PMID: 37152683 PMCID: PMC10151159 DOI: 10.1016/j.apmt.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Face masks have proven to be a useful protection from airborne viruses and bacteria, especially in the recent years pandemic outbreak when they effectively lowered the risk of infection from Coronavirus disease (COVID-19) or Omicron variants, being recognized as one of the main protective measures adopted by the World Health Organization (WHO). The need for improving the filtering efficiency performance to prevent penetration of fine particulate matter (PM), which can be potential bacteria or virus carriers, has led the research into developing new methods and techniques for face mask fabrication. In this perspective, Electrospinning has shown to be the most efficient technique to get either synthetic or natural polymers-based fibers with size down to the nanoscale providing remarkable performance in terms of both particle filtration and breathability. The aim of this Review is to give further insight into the implementation of electrospun nanofibers for the realization of the next generation of face masks, with functionalized membranes via addiction of active material to the polymer solutions that can give optimal features about antibacterial, antiviral, self-sterilization, and electrical energy storage capabilities. Furthermore, the recent advances regarding the use of renewable materials and green solvent strategies to improve the sustainability of electrospun membranes and to fabricate eco-friendly filters are here discussed, especially in view of the large-scale nanofiber production where traditional membrane manufacturing may result in a high environmental and health risk.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - E Imperi
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - A Picano
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - M Rossi
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), University of Rome Sapienza, Rome 00185, Italy
| |
Collapse
|
5
|
Espinoza-Montero PJ, Montero-Jiménez M, Rojas-Quishpe S, Alcívar León CD, Heredia-Moya J, Rosero-Chanalata A, Orbea-Hinojosa C, Piñeiros JL. Nude and Modified Electrospun Nanofibers, Application to Air Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030593. [PMID: 36770554 PMCID: PMC9919942 DOI: 10.3390/nano13030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/17/2023]
Abstract
Air transports several pollutants, including particulate matter (PM), which can produce cardiovascular and respiratory diseases. Thus, it is a challenge to control pollutant emissions before releasing them to the environment. Until now, filtration has been the most efficient processes for removing PM. Therefore, the electrospinning procedure has been applied to obtain membranes with a high filtration efficiency and low pressure drop. This review addressed the synthesis of polymers that are used for fabricating high-performance membranes by electrospinning to remove air pollutants. Then, the most influential parameters to produce electrospun membranes are indicated. The main results show that electrospun membranes are an excellent alternative to having air filters due to the versatility of the process, the capacity for controlling the fiber diameter, porosity, high filtration efficiency and low-pressure drop.
Collapse
Affiliation(s)
- Patricio J. Espinoza-Montero
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Correspondence: ; Tel.: +593-2299-1700 (ext. 1929)
| | - Marjorie Montero-Jiménez
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| | - Stalin Rojas-Quishpe
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | | | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Alfredo Rosero-Chanalata
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Carlos Orbea-Hinojosa
- Departamento de Ciencias Exactas, Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí P.O. Box 171-5-231B, Ecuador
| | - José Luis Piñeiros
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| |
Collapse
|
6
|
A Bibliometric Analysis of Electrospun Nanofibers for Dentistry. J Funct Biomater 2022; 13:jfb13030090. [PMID: 35893458 PMCID: PMC9326643 DOI: 10.3390/jfb13030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Electrospun nanofibers have been widely used in dentistry due to their excellent properties, such as high surface area and high porosity, this bibliometric study aimed to review the application fields, research status, and development trends of electrospun nanofibers in different fields of dentistry in recent years. All of the data were obtained from the Web of Science from 2004 to 2021. Origin, Microsoft Excel, VOSviewer, and Carrot2 were used to process, analyze, and evaluate the publication year, countries/region, affiliations, authors, citations, keywords, and journal data. After being refined by the year of publication, document types and research fields, a total of 378 publications were included in this study, and an increasing number of publications was evident. Through linear regression calculations, it is predicted that the number of published articles in 2022 will be 66. The most published journal about electrospun dental materials is Materials Science & Engineering C-Materials for Biological Applications, among the six core journals identified, the percent of journals with Journal Citation Reports (JCR) Q1 was 60%. A total of 17.60% of the publications originated from China, and the most productive institution was the University of Sheffield. Among all the 1949 authors, the most productive author was Marco C. Bottino. Most electrospun dental nanofibers are used in periodontal regeneration, and Polycaprolactone (PCL) is the most frequently used material in all studies. With the global upsurge in research on electrospun dental materials, bone regeneration, tissue regeneration, and cell differentiation and proliferation will still be the research hotspots of electrospun dental materials in recent years. Extensive collaboration and citations among authors, institutions and countries will also reach a new level.
Collapse
|