1
|
Wang X, Cui X, He B, Zhao Q, Wang Y, Xiao D, Meng Y, Gao T, Li K. A high-safety lithium-ion battery electrospun separator with Si 3N 4-assisted sulfonated poly(ether ether ketone) for regulating lithium flux. J Colloid Interface Sci 2025; 678:460-471. [PMID: 39303564 DOI: 10.1016/j.jcis.2024.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The uncontrolled lithium (Li) dendrite growth significantly impacts the safety performance of polymer separators. To mitigate this growth, this study introduces Si3N4 into sulfonated poly(ether Ether Ketone) (SPEEK) and prepares Si3N4/SPEEK composite separators via electrospinning. At the interface between the Si3N4/SPEEK separator and the Li anode, the Si nanowires that form impede Li dendrite growth, thereby enhancing the electrochemical performance of lithium-ion batteries (LIBs). The Li deposition test of the 10 % Si3N4/SPEEK separator can operate for 1000 h without short-circuiting. Additionally, the LiFePO4||Li cell with the 10 % Si3N4/SPEEK separator shows improved initial discharge capacity (157.8 mAh g-1 at 1C) and superior rate performance (125 mAh g-1 at 10C). Moreover, the nano-scale Si3N4 endows the separator with robust thermal and mechanical properties. The FLIR observations reveal that the 10 % Si3N4/SPEEK separator maintains uniform thermal distribution and structural integrity even at 300 °C, ensuring safe battery operation at high temperatures. The additional load of the 10 % Si3N4/SPEEK separator can reach 10.2 mN, which enhances the puncture resistance of the separator. This work provides a solid approach for the application of SPEEK as a high-safety and high-rate LIB separator.
Collapse
Affiliation(s)
- Xilong Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaogang Cui
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bin He
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China; Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Yujue Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China
| | - Dan Xiao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, PR China.
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
2
|
Sánchez Batalla B, Laube A, Struckmann T, Hofer A, Zallmann S, Körner C, Fischer S, Burek BO, Bachmann J, Weidlich C. A Mild Method for the Activation of Cation Exchange Membranes Used in Tubular PEM Electrolyzers. Chempluschem 2024; 89:e202300735. [PMID: 38126271 DOI: 10.1002/cplu.202300735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Co-extrusion of both half-cells in tubular PEM water electrolyzers can lower the costs for hydrogen production, since the number of components is reduced and the production process is simplified. However, after co-extrusion of the inner half-cell and the ion exchange membrane, the membrane is in its fluoride sulfonyl form and must be hydrolyzed to achieve the proton conductive sulfonic acid to be ready for use. Common practice is the hydrolysis using concentrated alkaline solutions, which causes a corrosion of the laminated anode electrode. We developed a less corrosive method using triethylsilanol as reactant. Tubular membranes hydrolyzed with this new procedure were characterized and tested in an electrolyzer laboratory test setup.
Collapse
Affiliation(s)
- Beatriz Sánchez Batalla
- Chemical Technology, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
- Chemistry of Thin Film Materials (CTFM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058, Erlangen, Germany
| | - Armin Laube
- Hamburg University of Applied Science, Department of Mechanical Engineering and Production Management, Berliner Tor 21, 20099, Hamburg, Germany
| | - Thorsten Struckmann
- Hamburg University of Applied Science, Department of Mechanical Engineering and Production Management, Berliner Tor 21, 20099, Hamburg, Germany
| | - André Hofer
- Chemistry of Thin Film Materials (CTFM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058, Erlangen, Germany
| | - Sebastian Zallmann
- Chair of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 5, 91058, Erlangen, Germany
| | - Carolin Körner
- Chair of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 5, 91058, Erlangen, Germany
| | - Simon Fischer
- UNIWELL Rohrsysteme GmbH & Co. KG, Siegelfelder Str. 1, 96106, Ebern, Germany
| | - Bastien Oliver Burek
- Chemical Technology, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials (CTFM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058, Erlangen, Germany
| | - Claudia Weidlich
- Chemical Technology, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt, Germany
| |
Collapse
|
3
|
Zhang HJ, Shang XB, Wang XR, Zhang CX, Wang QL. Anchoring of Fe-MIL-101-NH 2 to the Polymer Membrane Matrix through the Hinsberg Reaction to Promote Conductivity of SPEEK Membranes. J Phys Chem B 2024; 128:3499-3507. [PMID: 38546038 DOI: 10.1021/acs.jpcb.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
SCPEEK@MOF proton exchange membranes, where SCPEEK is sulfinyl chloride polyether ether ketone and MOF is a metal-organic framework, were prepared by doping Fe-MIL-101-NH2 into polymers. The amino group in the MOF and the -SOCl2 group in thionyl chloride polyether ether ketone cross-link to form a covalent bond through the Hinsberg reaction, and the prepared composite membrane has stronger stability than other electrostatic interactions and simple physical doping composite membranes. The formation of covalent bonds improves the water absorption of the composite membrane, which makes it easy for water molecules to form hydrogen bonds. Moreover, SPEEK as a proton conductive polymer and the synergy of MOFs improve the proton conductivity of composite membranes. The composite membranes were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The swelling rate, water absorption, mechanical stability, ion exchange capacity, and proton conductivity of the pure sulfonated polyether ether ketone (SPEEK) membrane were compared with those of the mechanically doped SPEEK/MOF membrane and the composite membrane SCPEEK@MOF doped with different ratios of Fe-MIL-101-NH2, and all of the SCPEEK@MOF showed superior performance. When the Fe-MIL-101-NH2 loading rate of the composite membrane is 2%, the proton conductivity of the composite membrane can reach 0.202 S cm-1 at 363 K and a 98% relative humidity, which is much higher than that of the SPEEK/MOF membrane obtained by simple physical doping under the same conditions.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xue-Bin Shang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xu-Ran Wang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Hossain SM, Patnaik P, Sharma R, Sarkar S, Chatterjee U. Unveiling CeZnO x Bimetallic Oxide: A Promising Material to Develop Composite SPPO Membranes for Enhanced Oxidative Stability and Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7097-7111. [PMID: 38296332 DOI: 10.1021/acsami.3c16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The incorporation of cerium-zinc bimetallic oxide (CeZnOx) nanostructures in sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) membranes holds promise in an enhanced and durable fuel cell performance. This investigation delves into the durability and efficiency of SPPO membranes intercalated with CeZnOx nanostructures by varying the filler loading of 1, 2, and 3% (w/w). The successful synthesis of CeZnOx nanostructures by the alkali-aided deposition method is confirmed by wide-angle X-ray diffraction spectroscopy (WAXS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. CeZnOx@SPPO nanocomposite membranes are fabricated using a solution casting method. The intricate interplay of interfacial adhesion and coupling configuration between three-dimensional CeZnOx and sulfonic moieties of the SPPO backbone yields an enhancement in the bound water content within the proton exchange membranes (PEMs). This constructs simultaneously an extensive hydrogen bonding network intertwined with the proton transport channels, thereby elevating the proton conductivity (Km). The orchestrated reversible redox cycling involving Ce3+/Ce4+ enhances the quenching of aggressive radicals, aided by Zn2+, promoting oxygen deficiency and Ce3+ concentration. This synergistic efficacy ultimately translates into composite PEMs characterized by a mere 4% mass loss and a nominal 6% decrease in Km after rigorous exposure to Fenton's solution. Remarkably, an improved power density of 403.2 mW/cm2 and a maximum current density of 1260.6 mA/cm2 were achieved with 2% loading of CeZnOx (SPZ-2) at 75 °C and 100% RH. The fuel cell performance of SPZ-2 is 74% higher than its corresponding pristine SPPO membrane.
Collapse
Affiliation(s)
- Sk Miraz Hossain
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratyush Patnaik
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritika Sharma
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Sarkar
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Chatterjee
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Tai MH, Thiam HS, Tee SF, Lim YS, Saw LH, Lai SO. Self-Healing Sulfonated Poly(ether ether ketone)-Based Polymer Electrolyte Membrane for Direct Methanol Fuel Cells: Effect of Solvent Content. Polymers (Basel) 2023; 15:4641. [PMID: 38139893 PMCID: PMC10747481 DOI: 10.3390/polym15244641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems.
Collapse
Affiliation(s)
- Mae Hwa Tai
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Hui San Thiam
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
- Centre for Advanced and Sustainable Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia
| | - Shiau Foon Tee
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Yun Seng Lim
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Lip Huat Saw
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| | - Soon Onn Lai
- Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Selangor, Malaysia; (M.H.T.); (S.F.T.); (Y.S.L.); (L.H.S.); (S.O.L.)
| |
Collapse
|
6
|
Khan MI, Shanableh A, Manzoor S, Fernandez J, Osman SM, Luque R. Design of tropinium-functionalized anion exchange membranes for acid recovery via diffusion dialysis process. ENVIRONMENTAL RESEARCH 2023; 229:115932. [PMID: 37076029 DOI: 10.1016/j.envres.2023.115932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Diffusion dialysis (DD) process utilizing anion exchange membranes (AEMs) is an environmentally-friendly and energy-efficient technology. From acidic wastewater, DD is needed for acid recovery. This research reports the development of a series of dense tropinium-functionalized AEMs via solution casting method. Fourier Infrared transform (FTIR) spectroscopy verified the successful preparation of AEMs. The developed AEMs exhibited a dense morphology, featuring 0.98-2.42 mmol/g of ion exchange capacity (IEC), 30-81% of water uptake (WR) and 7-32% of linear swelling ratio (LSR). They displayed exceptional mechanical, thermal and chemical stability and were employed for acid waste treatment from HCl/FeCl2 mixtures via DD process. AEMs possessed 20 to 59 (10-3 m/h) and 166 to 362 of acid diffusion dialysis coefficient (UH+) and separation factor (S) respectively at 25 °C. Compared to DF-120 commercial membrane (UH+ = 0.004 m/h, S = 24.3), their DD efficiency was improved under identical experimental conditions.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Javier Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE, London, UK; IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
7
|
Kuhnert E, Heidinger M, Sandu D, Hacker V, Bodner M. Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes. MEMBRANES 2023; 13:348. [PMID: 36984735 PMCID: PMC10053853 DOI: 10.3390/membranes13030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) is a leading candidate for the development of a sustainable hydrogen infrastructure. The heart of a PEMWE cell is represented by the membrane electrode assembly (MEA), which consists of a polymer electrolyte membrane (PEM) with catalyst layers (CLs), flow fields, and bipolar plates (BPPs). The weakest component of the system is the PEM, as it is prone to chemical and mechanical degradation. Membrane chemical degradation is associated with the formation of hydrogen peroxide due to the crossover of product gases (H2 and O2). In this paper, membrane failure due to H2 crossover was addressed in a membrane-focused accelerated stress test (AST). Asymmetric H2O and gas supply were applied to a test cell in OCV mode at two temperatures (60 °C and 80 °C). Electrochemical characterization at the beginning and at the end of testing revealed a 1.6-fold higher increase in the high-frequency resistance (HFR) at 80 °C. The hydrogen crossover was measured with a micro-GC, and the fluoride emission rate (FER) was monitored during the ASTs. A direct correlation between the FER and H2 crossover was identified, and accelerated membrane degradation at higher temperatures was detected.
Collapse
Affiliation(s)
- Eveline Kuhnert
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Mathias Heidinger
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Daniel Sandu
- AiDEXA GmbH, Bergmanngasse 45/10, 8010 Graz, Austria
| | - Viktor Hacker
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| | - Merit Bodner
- Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria
| |
Collapse
|
8
|
Xu J, Meng L, Shi Q, Ren Q, Wang Z. Long-side chains functionalized cross-linked sulfonated poly (ether ketone sulfone)s as proton exchange membranes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Khan M, Shanableh A, Elboughdiri N, Lashari MH, Manzoor S, Shahida S, Farooq N, Bouazzi Y, Rejeb S, Elleuch Z, Kriaa K, ur Rehman A. Adsorption of Methyl Orange from an Aqueous Solution onto a BPPO-Based Anion Exchange Membrane. ACS OMEGA 2022; 7:26788-26799. [PMID: 35936400 PMCID: PMC9352241 DOI: 10.1021/acsomega.2c03148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 05/02/2023]
Abstract
In this research, the development of a novel brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO)-based homogeneous anion exchange membrane (AEM) via the solution casting method was reported. Fourier transform infrared spectroscopy was used to confirm the successful development of the BPPO-based AEM. The prepared AEM showed excellent thermal stability. It exhibited an ion exchange capacity of 2.66 mg/g, a water uptake (W R) of 68%, and a linear swelling ratio of 31%. Methyl orange (MO), an anionic dye, was used as a model pollutant to evaluate the ion exchange ability of the membrane. The adsorption capacity of MO increased with the increase in contact time, membrane dosage (adsorbent), temperature, and pH while declined with the increase in initial concentration of MO in an aqueous solution and molarity of NaCl. Adsorption isotherm study showed that adsorption of MO was fitted well to the Freundlich adsorption isotherm because the value of the correlation coefficient (R 2 = 0.974) was close to unity. Adsorption kinetics study showed that adsorption of MO fitted well to the pseudo-second-order kinetic model. Adsorption thermodynamics evaluation represented that adsorption of MO was an endothermic (ΔH° = 18.72 kJ/mol) and spontaneous process. The AEM presented a maximum adsorption capacity of 18 mg/g. Moreover, the regeneration of the prepared membrane confirmed its ability to be utilized for three consecutive cycles. The developed BPPO-based AEM was an outstanding candidate for adsorption of MO from an aqueous solution.
Collapse
Affiliation(s)
- Muhammad
Imran Khan
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdallah Shanableh
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box
2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | | | - Suryyia Manzoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Shabnam Shahida
- Department
of Chemistry, University of Poonch, Rawalakot 12350, Azad Kashmir, Pakistan
| | - Nosheen Farooq
- Department
of Chemistry, The Government Sadiq College
Women University, Bahawalpur 63100, Pakistan
| | - Yassine Bouazzi
- Industrial
Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
| | - Sarra Rejeb
- Laboratory
of Metrology and Energy Systems, National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Zied Elleuch
- College
of Community, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
| | - Karim Kriaa
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
- Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), PO Box 5701, Riyadh 11432, Saudi Arabia
| | - Aziz ur Rehman
- Institute of Chemistry, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Water Treatment Using High Performance Antifouling Ultrafiltration Polyether Sulfone Membranes Incorporated with Activated Carbon. Polymers (Basel) 2022; 14:polym14112264. [PMID: 35683936 PMCID: PMC9182848 DOI: 10.3390/polym14112264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Membrane fouling is a continued critical challenge for ultrafiltration membranes performance. In this work, polyether sulfone (PES) ultrafiltration (UF) membranes were fabricated via phase-inversion method by incorporating varying concentrations of APTMS modified activated carbon (mAC). The mAC was thoroughly characterized and the fabricated membranes were studied for their surface morphology, functional groups, contact angle, water retention, swelling (%) porosity, and water flux. The hydrophilicity of mAC membranes also resulted in lower contact angle and higher values of porosity, roughness, water retention as well as water flux. Also, the membranes incorporated with mAC exhibited antibacterial performance against model test strains of gram-negative Ecoil and gram-positive S. aureus. The antifouling studies based on bovine serum albumin protein (BSA) solution filtration showed that mAC membranes have better BSA flux. The higher flux and antifouling characteristics of the mAC membranes were attributed to the electrostatic repulsion of the BSA protein from the unique functional properties of AC and network structure of APTMS. The novel mAC ultrafiltration membranes developed and studied in present work can provide higher flux and less BSA rejection thus can find antifouling applications for the isolation and concentration of proteins and macromolecules.
Collapse
|