1
|
Barragán VM. Membranes for Energy Conversion. MEMBRANES 2023; 13:735. [PMID: 37623796 PMCID: PMC10456290 DOI: 10.3390/membranes13080735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
In the modern world, the level of global energy consumption continues to increase, with current methods of energy generation still greatly dependent on fossil fuels, which will become less accessible in the not-so-distant future [...].
Collapse
Affiliation(s)
- V María Barragán
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
| |
Collapse
|
2
|
Electrochemical and Ion Transport Studies of Li+ Ion-Conducting MC-Based Biopolymer Blend Electrolytes. Int J Mol Sci 2022; 23:ijms23169152. [PMID: 36012415 PMCID: PMC9409367 DOI: 10.3390/ijms23169152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10−3 S cm−1. Moreover, for other transport parameters, the mobility (μ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.
Collapse
|
3
|
Adam AA, Ali MKM, Dennis JO, Soleimani H, Shukur MFBA, Ibnaouf KH, Aldaghri OA, Ibrahem MA, Abdel All NFM, Bashir Abdulkadir A. Innovative Methylcellulose‐Polyvinyl Pyrrolidone‐Based Solid Polymer Electrolytes Impregnated with Potassium Salt: Ion Conduction and Thermal Properties. Polymers (Basel) 2022; 14:polym14153055. [PMID: 35956570 PMCID: PMC9370478 DOI: 10.3390/polym14153055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this research, innovative green and sustainable solid polymer electrolytes (SPEs) based on plasticized methylcellulose/polyvinyl pyrrolidone/potassium carbonate (MC/PVP/K2CO3) were examined. The MC/PVP/K2CO3 SPE system with five distinct ethylene carbonate (EC) concentrations as a plasticizer was successfully designed. Frequency-dependent conductivity plots were used to investigate the conduction mechanism of the SPEs. Electrochemical potential window stability and the cation transfer number of the SPEs were studied via linear sweep voltammetry (LSV) and transference number measurement (TNM), respectively. Additionally, the structural behavior of the SPEs was analyzed using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) techniques. The SPE film complexed with 15 wt.% EC measured a maximum conductivity of 3.88 × 10−4 Scm−1. According to the results of the transference number examination, cations that record a transference number of 0.949 are the primary charge carriers. An EDLC was fabricated based on the highest conducting sample that recorded a specific capacitance of 54.936 Fg−1 at 5 mVs−1.
Collapse
Affiliation(s)
- Abdullahi Abbas Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- Department of Physics, Al-Qalam University Katsina, Katsina 820252, Nigeria
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - Mohammed Khalil Mohammed Ali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - John Ojur Dennis
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Hassan Soleimani
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Osamah A. Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Moez A. Ibrahem
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Naglaa F. M. Abdel All
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Abubakar Bashir Abdulkadir
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| |
Collapse
|
4
|
Dennis JO, Adam AA, Ali MKM, Soleimani H, Shukur MFBA, Ibnaouf KH, Aldaghri O, Eisa MH, Ibrahem MA, Bashir Abdulkadir A, Cyriac V. Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller. MEMBRANES 2022; 12:membranes12070706. [PMID: 35877909 PMCID: PMC9319390 DOI: 10.3390/membranes12070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NH4Cl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NH4Cl salt, and ZnO nanofiller interact with one another appreciably. EIS demonstrated the feasibility of achieving a conductivity of 3.13 × 10−4 Scm−1 for the optimum electrolyte at room temperature. Using the dielectric formalism technique, the dielectric properties, energy modulus, and relaxation time of NH4Cl in MC/PC/NH4Cl and MC/PC/NH4Cl/ZnO systems were determined. The contribution of chain dynamics and ion mobility was acknowledged by the presence of a peak in the imaginary portion of the modulus study. The LSV measurement yielded 4.55 V for the comparatively highest conductivity NCSPE.
Collapse
Affiliation(s)
- John Ojur Dennis
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Abdullahi Abbas Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Physics, Al-Qalam University Katsina, Katsina 820252, Nigeria
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - M. K. M. Ali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - Hassan Soleimani
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - K. H. Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - O. Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - M. A. Ibrahem
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - Abubakar Bashir Abdulkadir
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Vipin Cyriac
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|