1
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Gayatri R, Fizal ANS, Yuliwati E, Hossain MS, Jaafar J, Zulkifli M, Taweepreda W, Ahmad Yahaya AN. Preparation and Characterization of PVDF-TiO 2 Mixed-Matrix Membrane with PVP and PEG as Pore-Forming Agents for BSA Rejection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1023. [PMID: 36985917 PMCID: PMC10057082 DOI: 10.3390/nano13061023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF-PEG-TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.
Collapse
Affiliation(s)
- Rianyza Gayatri
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Noor Syimir Fizal
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Erna Yuliwati
- Program Study of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Palembang, Jalan A. Yani 13 Ulu Kota, Palembang 30263, Indonesia;
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Muzafar Zulkifli
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| | - Wirach Taweepreda
- Polymer Science Program, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand;
| | - Ahmad Naim Ahmad Yahaya
- Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah 78000, Melaka, Malaysia; (R.G.); (A.N.S.F.); (M.Z.)
| |
Collapse
|
3
|
Fekete L, Fazekas ÁF, Hodúr C, László Z, Ágoston Á, Janovák L, Gyulavári T, Pap Z, Hernadi K, Veréb G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO 2/CNT Nanocomposite-Modified PVDF Membranes. MEMBRANES 2023; 13:209. [PMID: 36837714 PMCID: PMC9964517 DOI: 10.3390/membranes13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.
Collapse
Affiliation(s)
- Laura Fekete
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Cecilia Hodúr
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla sq. 1, H-6720 Szeged, Hungary
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, Miskolc-Egyetemváros, C/1 108, H-3515 Miskolc, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
5
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|