1
|
Alrebdi TA, Rezk RA, Alghamdi SM, Ahmed HA, Alkallas FH, Pashameah RA, Mostafa AM, Mwafy EA. Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. MEMBRANES 2022; 12:877. [PMID: 36135895 PMCID: PMC9505665 DOI: 10.3390/membranes12090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reham A. Rezk
- Higher Technological Institute, 10th of Ramadan City, 6th of October Branch, 3rd Zone, 7th Section, 6th of October City, 10th of Ramadan 44629, Egypt
| | - Shoug M. Alghamdi
- Department of Physics, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Ag/ZnO Thin Film Nanocomposite Membrane Prepared by Laser-Assisted Method for Catalytic Degradation of 4-Nitrophenol. MEMBRANES 2022; 12:membranes12080732. [PMID: 35893450 PMCID: PMC9331792 DOI: 10.3390/membranes12080732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Zinc oxide thin film (ZnO thin film) and a silver-doped zinc oxide nanocomposite thin film (Ag/ZnO thin film) were prepared by the technique of the pulsed laser deposition at 600 °C to be applicable as a portable catalytic material for the removal of 4-nitrophenol. The nanocomposite was prepared by making the deposition of the two targets (Zn and Ag), and it was analyzed by different techniques. According to the XRD pattern, the hexagonal wurtzite crystalline form of Ag-doped ZnO NPs suggested that the samples were polycrystalline. Additionally, the shifting of the diffraction peaks to the higher angles, which denotes that doping reduces the crystallite size, illustrated the typical effect of the dopant Ag nanostructure on the ZnO thin film, which has an ionic radius less than the host cation. From SEM images, Ag-doping drastically altered the morphological characteristics and reduced the aggregation. Additionally, its energy band gap decreased when Ag was incorporated. UV spectroscopy was then used to monitor the catalysis process, and Ag/ZnO thin films had a larger first-order rate constant of the catalytic reaction K than that of ZnO thin film. According to the catalytic experiment results, the Ag/ZnO thin film has remarkable potential for use in environmentally-favorable applications.
Collapse
|