1
|
Geng Y, Zhang L, Li M, He Y, Lu B, He J, Li X, Zhou H, Fan X, Xiao T, Zhai J. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309128. [PMID: 38308414 DOI: 10.1002/smll.202309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The osmotic energy conversion properties of biomimetic light-stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light-induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano-confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m-2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m-2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high-performance energy conversion.
Collapse
Affiliation(s)
- Yutong Geng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Liangqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mengjie Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Youfeng He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hangjian Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Lv Y, Dong L, Cheng L, Gao T, Wu C, Chen X, He T, Cui Y, Liu W. Tailoring Monovalent Ion Sieving in Graphene-Oxide Membranes with High Flux by Rationally Intercalating Crown Ethers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46261-46268. [PMID: 37738535 DOI: 10.1021/acsami.3c10113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Two-dimensional membranes have shown promising potential for ion-selective separation due to their well-defined interlayer channels. However, the typical "trade-off" effect of throughput and selectivity limits their developments. Herein, we report a precise tailoring of monovalent cation sieving technology with enhanced water throughput via the intercalation of graphene-oxide membranes with selective crown ethers. By tuning the lamellar spacing of graphene oxide, a critical interlayer distance (∼11.04 Å) is revealed to maximize water flux (53.4 mol m-2 h-2 bar-1) without sacrificing ion selectivity. As a result, the elaborately enlarged interlayer distance offers improved water permeance. Meanwhile, various specific cations with remarkably high selectivity can be separated in mixed solutions because of the strong chelation with crown ethers. This work opens up a new avenue for high-throughput and precise regulation of ion separations for various application scenarios.
Collapse
Affiliation(s)
- Yinjie Lv
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lvyang Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyi Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao He
- Laboratory for Membrane Materials and Separation Technology, Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Soomro F, Memon FH, Khan MA, Iqbal M, Ibrar A, Memon AA, Lim JH, Choi KH, Thebo KH. Ultrathin Graphene Oxide-Based Nanocomposite Membranes for Water Purification. MEMBRANES 2023; 13:membranes13010064. [PMID: 36676871 PMCID: PMC9863712 DOI: 10.3390/membranes13010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 05/14/2023]
Abstract
Two-dimensional graphene oxide (GO)-based lamellar membranes have been widely developed for desalination, water purification, gas separation, and pervaporation. However, membranes with a well-organized multilayer structure and controlled pore size remain a challenge. Herein, an easy and efficient method is used to fabricate MoO2@GO and WO3@GO nanocomposite membranes with controlled structure and interlayer spacing. Such membranes show good separation for salt and heavy metal ions due to the intensive stacking interaction and electrostatic attraction. The as-prepared composite membranes showed high rejection rates (˃70%) toward small metal ions such as sodium (Na+) and magnesium (Mg2+) ions. In addition, both membranes also showed high rejection rates ˃99% for nickel (Ni2+) and lead (Pb2+) ions with good water permeability of 275 ± 10 L m-2 h-1 bar-1. We believe that our fabricated membranes will have a bright future in next generation desalination and water purification membranes.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakriya University, Multan 60800, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur 22620, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur 22620, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Jong Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| | - Kyung Hyon Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang 110016, China
- Correspondence: (J.H.L.); (K.H.C.); (K.H.T.)
| |
Collapse
|
4
|
Robertson EJ, Stehle YY, Hu X, Kilby L, Olsson K, Nguyen M, Cortez R. Al 3+ Modification of Graphene Oxide Membranes: Effect of Al Source. MEMBRANES 2022; 12:1237. [PMID: 36557144 PMCID: PMC9788489 DOI: 10.3390/membranes12121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Graphene oxide (GO) membranes are promising materials for water filtration applications due to abundant nanochannels in the membrane structure. Because GO membranes are unstable in water, metal cations such as Al3+ are often introduced to the membrane structure to promote cross-linking between individual GO sheets. Here, we describe a simple yet versatile method to incorporate Al3+ into GO membranes formed via a slow self-assembly process. Specifically, we directly added aluminum to acidic GO sheet solutions from a variety of sources: Al2O3, AlCl3 and Al foil. Each species reacts differently with water, which can affect the GO solution pH and thus the density of carboxylate groups on the sheet edges available for cross-linking to the Al3+ cations. We demonstrate through characterization of the GO sheet solutions as well as the as-formed membranes' morphologies, hydrophobicities, and structures that the extent to which the Al3+ cross-links to the GO sheet edges vs. the GO sheet basal planes is dependent on the Al source. Our results indicate that greatest enhancements in the membrane stability occur when electrostatic and coordination interactions between Al3+ and the carboxylate groups on the GO sheet edges are more extensive than Al3+-π interactions between basal planes.
Collapse
Affiliation(s)
| | - Yijing Y. Stehle
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Xiaoyu Hu
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Luke Kilby
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Katelyn Olsson
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Minh Nguyen
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Rebecca Cortez
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| |
Collapse
|