1
|
Choi JM, Manthapuri V, Keenum I, Brown CL, Xia K, Chen C, Vikesland PJ, Blair MF, Bott C, Pruden A, Zhang L. A machine learning framework to predict PPCP removal through various wastewater and water reuse treatment trains. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024:d4ew00892h. [PMID: 39758590 PMCID: PMC11694563 DOI: 10.1039/d4ew00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal via wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments). For this, we grouped PPCPs based on their relative abundances by comparing peak areas measured via non-target profiling using ultra-performance liquid chromatography-tandem mass spectrometry through two field-scale treatment trains. The resulting clusters were then classified using Abraham descriptors and log K ow as input to the three ML models: support vector machines (SVM), logistic regression, and random forest (RF). SVM achieved the highest accuracy, 79.1%, in predicting PPCP removal. Notably, a 58-75% overlap was observed between the ML clusters of PPCPs and the Abraham descriptor and log K ow clusters of PPCPs, indicating the potential of using Abraham descriptors and log K ow to predict the fate of PPCPs through various treatment trains. Given the myriad of PPCPs of concern, this approach can supplement information gathered from experimental testing to help optimize the design of wastewater and water reuse treatment trains for PPCP removal.
Collapse
Affiliation(s)
- Joung Min Choi
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| | - Vineeth Manthapuri
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
- Civil, Environmental and Geospatial Engineering, Michigan Tech University MI 49931 USA
| | - Connor L Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech Blacksburg VA 24061 USA
| | - Kang Xia
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Chaoqi Chen
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Matthew F Blair
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Charles Bott
- Hampton Roads Sanitation District Virginia Beach VA 23455 USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
2
|
Sun W, Li J, Chen Z, Wang S, Lichtfouse E, Liu H. Decomposition of metal-organic complexes and metal recovery in wastewater: A systematic review and meta-synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169582. [PMID: 38154646 DOI: 10.1016/j.scitotenv.2023.169582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Metals are rarely found as free ions in natural and anthropogenic environments, but they are often associated with organic matter and minerals. Under the context of circular economy, metals should be recycled, yet they are difficult to extract for their complex forms in real situations. Based on the protocols of review methodology and the analysis of VOS viewer, there are few reviews on the properties of metal-organic complexes, decomplexation methods, the effect of coexisting ions, the pH influence, and metal recovery methods for the increasingly complicated metal-organic complexes wastewater. Conventional treatment methods such as flocculation, adsorption, biological degradation, and ion exchange fail to decompose metal-organic complexes completely without causing secondary pollution in wastewater. To enhance comprehension of the behavior and morphology exhibited by metal-organic complexes within aqueous solutions, we presented the molecular structure and properties of metal-organic complexes, the decomplexation mechanisms that encompassed both radical and non-radical oxidizing species, including hydroxyl radical (OH), sulfate radical (SO˙4-), superoxide radical (O˙2-), hydrogen peroxide (H2O2), ozone (O3), and singlet oxygen (1O2). More importantly, we reviewed novel aspects that have not been covered by previous reviews considering the impact of operational parameters and coexisting ions. Finally, the potential avenues and challenges were proposed for future research.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiao Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziang Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuwen Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
3
|
Raota CS, Crespo JDS, Baldasso C, Giovanela M. Development of a Green Polymeric Membrane for Sodium Diclofenac Removal from Aqueous Solutions. MEMBRANES 2023; 13:662. [PMID: 37505027 PMCID: PMC10383731 DOI: 10.3390/membranes13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due to its hydrophilicity, which reduces its stability and performance. Crosslinking procedures through an esterification reaction with carboxylic acids can address this concern. For this, experimental design methodology and statistical analysis were employed to achieve the optimal crosslinking conditions of PVA with citric acid as a crosslinker, aiming at the best permeate production and sodium diclofenac (DCF) removal from water. The membranes were produced following an experimental design and characterized using multiple techniques to understand the effect of crosslinking on the membrane performance. Characterization and filtration results demonstrated that crosslinking regulates the membranes' properties, and the optimized conditions (crosslinking at 110 °C for 110 min) produced a membrane able to remove 44% DCF from water with a permeate production of 2.2 L m-2 h-1 at 3 bar, comparable to commercial loose nanofiltration membranes. This study contributes to a more profound knowledge of green membranes to make water treatment a sustainable practice in the near future.
Collapse
Affiliation(s)
- Camila Suliani Raota
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Camila Baldasso
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Franscisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
4
|
Devaisy S, Kandasamy J, Nguyen TV, Ratnaweera H, Vigneswaran S. Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. MEMBRANES 2023; 13:605. [PMID: 37367809 DOI: 10.3390/membranes13060605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
In this article, an extensive examination is provided on the possible uses of membranes and hybrid processes in wastewater treatment. While membrane technologies face certain constraints, such as membrane fouling and scaling, the incomplete elimination of emerging contaminants, elevated expenses, energy usage, and brine disposal, there are approaches that can address these challenges. Methods such as pretreating the feed water, utilizing hybrid membrane systems and hybrid dual-membrane systems, and employing other innovative membrane-based treatment techniques can enhance the efficacy of membrane processes and advance sustainability.
Collapse
Affiliation(s)
- Sukanyah Devaisy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
- Department of Bio-Science, Faculty of Applied Science, University of Vavuniya, Vavuniya 43 000, Sri Lanka
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
| | - Tien Vinh Nguyen
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
| | - Harsha Ratnaweera
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
5
|
Chelu M, Popa M, Calderon Moreno J, Leonties AR, Ozon EA, Pandele Cusu J, Surdu VA, Aricov L, Musuc AM. Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater. Gels 2023; 9:454. [PMID: 37367125 DOI: 10.3390/gels9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The removal of pharmaceutical contaminants from wastewater has gained considerable attention in recent years, particularly in the advancements of hydrogel-based adsorbents as a green solution for their ease of use, ease of modification, biodegradability, non-toxicity, environmental friendliness, and cost-effectiveness. This study focuses on the design of an efficient adsorbent hydrogel based on 1% chitosan, 40% polyethylene glycol 4000 (PEG4000), and 4% xanthan gum (referred to as CPX) for the removal of diclofenac sodium (DCF) from water. The interaction between positively charged chitosan and negatively charged xanthan gum and PEG4000 leads to strengthening of the hydrogel structure. The obtained CPX hydrogel, prepared by a green, simple, easy, low-cost, and ecological method, has a higher viscosity due to the three-dimensional polymer network and mechanical stability. The physical, chemical, rheological, and pharmacotechnical parameters of the synthesized hydrogel were determined. Swelling analysis demonstrated that the new synthetized hydrogel is not pH-dependent. The obtained adsorbent hydrogel reached the adsorption capacity (172.41 mg/g) at the highest adsorbent amount (200 mg) after 350 min. In addition, the adsorption kinetics were calculated using a pseudo first-order model and Langmuir and Freundlich isotherm parameters. The results demonstrate that CPX hydrogel can be used as an efficient option to remove DCF as a pharmaceutical contaminant from wastewater.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Calderon Moreno
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Aricov
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|