1
|
Qiu Q, Wang Z, Lan L. Polyelectrolyte-Surfactant Complex Nanofibrous Membranes for Antibacterial Applications. Polymers (Basel) 2024; 16:414. [PMID: 38337304 DOI: 10.3390/polym16030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Polyelectrolyte-surfactant complexes (PESCs) have garnered significant attention due to their extensive range of biological and industrial applications. Most present applications are predominantly used in liquid or emulsion states, which limits their efficacy in solid material-based applications. Herein, pre-hydrolyzed polyacrylonitrile (HPAN) and quaternary ammonium salts (QAS) are employed to produce PESC electrospun membranes via electrospinning. The formation process of PESCs in a solution is observed. The results show that the degree of PAN hydrolysis and the varying alkyl chain lengths of surfactants affect the rate of PESC formation. Moreover, PESCs/PCL hybrid electrospun membranes are fabricated, and their antibacterial activities against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) are investigated. The resulting electrospun membranes exhibit high bactericidal efficacy, which enables them to serve as candidates for future biomedical and filtration applications.
Collapse
Affiliation(s)
- Qiaohua Qiu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengkai Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liying Lan
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Kim GJ, Park SJ, Kim L, Kim KH, Kim S, An JE, Shin CJ, Seo SE, Jo S, Kim J, Ha S, Seo HW, Rho MC, Kwon DH, Kim WK, Jeong G, Ryu JC, Kim JJ, Kwon OS. Second Skin as Self-Protection Against γ-Hydroxybutyrate. ACS NANO 2023; 17:25405-25418. [PMID: 38060256 DOI: 10.1021/acsnano.3c08840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
γ-Hydroxybutyrate (GHB), a date-rape drug, causes certain symptoms, such as amnesia, confusion, ataxia, and unconsciousness, when dissolved in beverages and consumed by a victim. Commonly, assailants use GHB in secret for the crime of drug-facilitated sexual assault because it is tasteless, odorless, and colorless when dissolved in beverages. Generally, GHB detection methods are difficult to use promptly and secretly in situ and in real life because of the necessary detection equipment and low selectivity. To overcome this problem, we have developed a fast, simple, and easy-to-use second skin platform as a confidential self-protection platform that can detect GHB in situ or in real life without equipment. The second skin platform for naked-eye detection of GHB is fabricated with poly(vinyl alcohol) (PVA), polyurethane (PU), and polyacrylonitrile (PAN) included in the chemical receptor 2-(3-bromo-4-hydroxystyryl)-3-ethylbenzothiazol-3-ium iodide (BHEI). PAN conjugated with BHEI nanofibers (PB NFs) has various characteristics, such as ease of use, high sensitivity, and fast color change. PB NFs rapidly detected GHB at 0.01 mg/mL. Furthermore, the second-skin platform attached to the fingertip and wrist detected both 1 and 0.1 mg/mL GHB in solution within 50 s. The color changes caused by the interaction of GHB and the second skin platform cannot be stopped due to strong chemical reactions. In addition, a second skin platform can be secretly utilized in real life because it can recognize fingerprints and object temperatures. Therefore, the second skin platform can be used to aid daily life and prevent drug-facilitated sexual assault crime when attached to the skin because it can be exposed anytime and anywhere.
Collapse
Affiliation(s)
- Gyeong-Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soomin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jai Eun An
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chan Jae Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seongjae Jo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Siyoung Ha
- Department of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mun-Chual Rho
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea
| | - Do Hyung Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Gugin Jeong
- BJ BIOCHEM, Inc., Daejeon 34025, Republic of Korea
| | - Jae Chun Ryu
- BJ BIOCHEM, Inc., Daejeon 34025, Republic of Korea
| | - Jae Joon Kim
- Flexible Electronics Research Section, Reality Devices Research Division, Hyper-Reality Metaverse Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|