Huang K, Yan X, Li Z, Liu F, Cui K, Liu Q. Construction and Identification of a Breast Bioreactor for Human-Derived Hypoglycemic Protein Amylin.
Life (Basel) 2024;
14:191. [PMID:
38398700 PMCID:
PMC10890372 DOI:
10.3390/life14020191]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The mammary gland of mammals can generate numerous bioactive proteins. To express the human amylin protein in the mammary glands of domestic animals, we engineered a transgenic mammary gland bioreactor. For this study, we produced transgenic mice through prokaryotic microinjection. RT-PCR, qPCR, and Western blotting confirmed the presence of transgenes in the mice. The ELISA assay indicated an amylin yield of approximately 1.44 μg/mL in the mice milk. Further research revealed that consuming milk containing amylin resulted in a slight, but insignificant enhancement in food consumption, blood sugar equilibrium, and glucose tolerance. The influence of amylin-fortified milk on the abundance of fecal strains in mice was examined, and a significant difference in the quantity of strains needed for fatty acid synthesis and metabolism was discovered. The amylin protein gathered from humans is safe to consume, as no harmful effects were detected in the mice. Our study examined the production of human amylin using a new safety strategy that could potentially alleviate diabetic symptoms in the future through oral administration of milk containing amylin.
Collapse