1
|
Can A, Tyler AI, Mackie AR. Potential use of bile salts in lipid self-assembled systems for the delivery of phytochemicals. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
3
|
Erlendsson S, Thorsen TS, Vauquelin G, Ammendrup-Johnsen I, Wirth V, Martinez KL, Teilum K, Gether U, Madsen KL. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets. eLife 2019; 8:39180. [PMID: 30605082 PMCID: PMC6345565 DOI: 10.7554/elife.39180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds. Inside a cell, many different signals carry information that is essential for the cell to remain healthy and perform its role in the body. It is, therefore, very important that the signals are sent to the right places at the right times. Scaffold proteins play an essential role in organizing these signals by bringing specific proteins and other molecules into close contact at particular times and locations within the cell. Defects in scaffolding proteins can lead to cancer, psychiatric disorders and other diseases, so these proteins represent potential new targets for medicinal drugs. Many scaffolding proteins assemble groups of proteins on the surface of the membrane that surrounds the cell. Previous studies have shown that scaffolding proteins are able to bind to several other proteins as well as the membrane itself at the same time. However, the precise way in which scaffolding proteins assemble such groups is not clear because it is technically challenging to study this process in living cells. To overcome this challenge, Erlendsson, Thorsen et al. used a new experimental setup known as supported cell membrane sheets – which provides direct access to the side of the cell membrane that usually faces into the cell – to study two scaffolding proteins known as PICK1 and PSD-95. The experiments show that PICK1 and PSD-95 bind to their partner proteins up to 100 times more strongly than previously observed using other approaches. This is due to the scaffolding proteins binding more strongly to both their partners and the membrane. Unexpectedly, the experiments show that the shape and physical characteristics of the partner protein have no effect on the increase in the strength of the binding. Further experiments suggest that altering the ability of the PDZ domain of PICK1 to bind to partner proteins changes the mode of action of the PICK1 protein so that it can activate different responses in the cell. Together these findings imply that the ability of scaffolding proteins to bind to their partner proteins is finely tuned to encode specific responses in cells in different situations – a hypothesis that Erlendsson, Thorsen et al. are planning to test in intact cells.
Collapse
Affiliation(s)
- Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Georges Vauquelin
- Molecular and Biochemical Pharmacology, Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Volker Wirth
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Könnel A, Bugaeva W, Gügel IL, Philippar K. BANFF: bending of bilayer membranes by amphiphilic α-helices is necessary for form and function of organelles 1. Biochem Cell Biol 2018; 97:243-256. [PMID: 30208283 DOI: 10.1139/bcb-2018-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By binding to and inserting into the lipid bilayer, amphiphilic α-helices of proteins are involved in the curvature of biological membranes in all organisms. In particular, they are involved in establishing the complex membrane architecture of intracellular organelles like the endoplasmatic reticulum, Golgi apparatus, mitochondria, and chloroplasts. Thus, amphiphilic α-helices are essential for maintenance of cellular metabolism and fitness of organisms. Here we focus on the structure and function of membrane-intrinsic proteins, which are involved in membrane curvature by amphiphilic α-helices, in mitochondria and chloroplasts of the eukaryotic model organisms yeast and Arabidopsis thaliana. Further, we propose a model for transport of fatty acids and lipid compounds across the envelope of chloroplasts in which amphiphilic α-helices might play a role.
Collapse
Affiliation(s)
- Anne Könnel
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Wassilina Bugaeva
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Irene L Gügel
- b Department of Biology I - Botany, Ludwig-Maximilians University München, Großhaderner-Str. 2, 82152 Planegg-Martinsried, Germany
| | - Katrin Philippar
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| |
Collapse
|