1
|
Sampedro T, Tristán C, Gómez-Coma L, Fallanza M, Ortiz I, Ibañez R. Design of a Reverse Electrodialysis Plant for Salinity Gradient Energy Extraction in a Coastal Wastewater Treatment Plant. MEMBRANES 2023; 13:546. [PMID: 37367750 DOI: 10.3390/membranes13060546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
The chemical potential difference at the discharge points of coastal Wastewater Treatment Plants (WWTPs) uncovers the opportunity to harness renewable salinity gradient energy (SGE). This work performs an upscaling assessment of reverse electrodialysis (RED) for SGE harvesting of two selected WWTPs located in Europe, quantified in terms of net present value (NPV). For that purpose, a design tool based on an optimization model formulated as a Generalized Disjunctive Program previously developed by the research group has been applied. The industrial scale-up of SGE-RED has already proven to be technically and economically feasible in the Ierapetra medium-sized plant (Greece), mainly due to a greater volumetric flow and a warmer temperature. At the current price of electricity in Greece and the up-to-date market cost of membranes of 10 EUR/m2, the NPV of an optimized RED plant in Ierapetra would amount to EUR117 thousand operating with 30 RUs in winter and EUR 157 thousand for 32 RUs in summer, harnessing 10.43 kW and 11.96 kW of SGE for the winter and summer seasons, respectively. However, in the Comillas facility (Spain), this could be cost-competitive with conventional alternatives, namely coal or nuclear power, under certain conditions such as lower capital expenses due to affordable membrane commercialization (4 EUR/m2). Bringing the membrane price down to 4 EUR/m2 would place the SGE-RED's Levelized Cost of Energy in the range of 83 EUR/MWh to 106 EUR/MWh, similar to renewable sources such as solar PV residential rooftops.
Collapse
Affiliation(s)
- Tamara Sampedro
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Carolina Tristán
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Lucía Gómez-Coma
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Marcos Fallanza
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Inmaculada Ortiz
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| | - Raquel Ibañez
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Av. Los Castros 46, 39005 Santander, Spain
| |
Collapse
|
2
|
Sugimoto Y, Ujike R, Higa M, Kakihana Y, Higa M. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. MEMBRANES 2022; 12:membranes12111141. [PMID: 36422133 PMCID: PMC9697558 DOI: 10.3390/membranes12111141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
Reverse electrodialysis (RED) power generation using seawater (SW) and river water is expected to be a promising environmentally friendly power generation system. Experiments with large RED stacks are needed for the practical application of RED power generation, but only a few experimental results exist because of the need for large facilities and a large area of ion-exchange membranes (IEMs). In this study, to predict the power output of a large RED stack, the power generation performances of a lab-scale RED stack (40 membrane pairs and 7040 cm2 total effective membrane area) with several IEMs were evaluated. The results were converted to the power output of a pilot-scale RED stack (299 membrane pairs and 179.4 m2 total effective membrane area) via the reference IEMs. The use of low-area-resistance IEMs resulted in lower internal resistance and higher power density. The power density was 2.3 times higher than that of the reference IEMs when natural SW was used. The net power output was expected to be approximately 230 W with a pilot-scale RED stack using low-area-resistance IEMs and natural SW. This value is one of the indicators of the output of a large RED stack and is a target to be exceeded with further improvements in the RED system.
Collapse
Affiliation(s)
- Yu Sugimoto
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Ryo Ujike
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Minato Higa
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yuriko Kakihana
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Mitsuru Higa
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
- Blue Energy Center for SGE Technology (BEST), Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
3
|
Review: Brine Solution: Current Status, Future Management and Technology Development. SUSTAINABILITY 2022. [DOI: 10.3390/su14116752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Desalination brine is extremely concentrated saline water; it contains various salts, nutrients, heavy metals, organic contaminants, and microbial contaminants. Conventional disposal of desalination brine has negative impacts on natural and marine ecosystems that increase the levels of toxicity and salinity. These issues demand the development of brine management technologies that can lead to zero liquid discharge. Brine management can be productive by adopting economically feasible methodologies, which enables the recovery of valuable resources like freshwater, minerals, and energy. This review focuses on the recent advances in brine management using various membrane/thermal-based technologies and their applicability in water, mineral, and energy recoveries, considering their pros and cons. This review also exemplifies the hybrid processes for metal recovery and zero liquid discharge that may be adopted, so far, as an appropriate futuristic strategy. The data analyzed and outlook presented in this review could definitely contribute to the development of economically achievable future strategies for sustainable brine management.
Collapse
|
4
|
YAMADA Y, SOWA K, KITAZUMI Y, SHIRAI O. Improvement in the Power Output of a Reverse Electrodialysis System by the Addition of Poly(sodium 4-styrenesulfonate). ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yusuke YAMADA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Keisei SOWA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
5
|
Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.
Collapse
|
6
|
Reverse Electrodialysis: Potential Reduction in Energy and Emissions of Desalination. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity gradient energy harvesting by reverse electrodialysis (RED) is a promising renewable source to decarbonize desalination. This work surveys the potential reduction in energy consumption and carbon emissions gained from RED integration in 20 medium-to-large-sized seawater reverse osmosis (SWRO) desalination plants spread worldwide. Using the validated RED system’s model from our research group, we quantified the grid mix share of the SWRO plant’s total energy demand and total emissions RED would abate (i) in its current state of development and (ii) if captured all salinity gradient exergy (SGE). Results indicate that more saline and warmer SWRO brines enhance RED’s net power density, yet source availability may restrain specific energy supply. If all SGE were harnessed, RED could supply ~40% of total desalination plants’ energy demand almost in all locations, yet energy conversion irreversibility and untapped SGE decline it to ~10%. RED integration in the most emission-intensive SWRO plants could relieve up to 1.95 kg CO2-eq m−3. Findings reveal that RED energy recovery from SWRO concentrate effluents could bring desalination sector sizeable energy and emissions savings provided future advancements bring RED technology closer to its thermodynamic limit.
Collapse
|