1
|
Shi B, Li YR, Xu J, Zou J, Zhou Z, Jia Q, Jiang HB, Liu K. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys. Heliyon 2024; 10:e24348. [PMID: 38434039 PMCID: PMC10906185 DOI: 10.1016/j.heliyon.2024.e24348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024] Open
Abstract
Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.
Collapse
Affiliation(s)
- Biying Shi
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiaqi Xu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Jiawei Zou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Zili Zhou
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| | - Kai Liu
- The CONVERSATIONALIST Club & Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan 250117, Shandong, China
| |
Collapse
|
2
|
Detailing the influence of PEO-coated biodegradable Mg-based implants on the lacuno-canalicular network in sheep bone: A pilot study. Bioact Mater 2023; 26:14-23. [PMID: 36875051 PMCID: PMC9975618 DOI: 10.1016/j.bioactmat.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market. A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone. Osteocytes, which are housed and communicate through the lacuno-canalicular network (LCN), are integral to bone health and remodelling processes. Therefore, it is essential to examine the framework of the LCN in response to implant materials or surface treatments. Biodegradable materials offer an alternative solution to permanent implants, which may require revision or removal surgeries. Magnesium alloys have resurfaced as promising materials due to their bone-like properties and safe degradation in vivo. To further tailor their degradation capabilities, surface treatments such as plasma electrolytic oxidation (PEO) have demonstrated to slow degradation. For the first time, the influence of a biodegradable material on the LCN is investigated by means of non-destructive 3D imaging. In this pilot study, we hypothesize noticeable variations in the LCN caused by altered chemical stimuli introduced by the PEO-coating. Utilising synchrotron-based transmission X-ray microscopy, we have characterised morphological LCN differences around uncoated and PEO-coated WE43 screws implanted into sheep bone. Bone specimens were explanted after 4, 8, and 12 weeks and regions near the implant surface were prepared for imaging. Findings from this investigation indicate that the slower degradation of PEO-coated WE43 induces healthier lacunar shapes within the LCN. However, the stimuli perceived by the uncoated material with higher degradation rates induces a greater connected LCN better prepared for bone disturbance.
Collapse
|
3
|
Tang SH, Venault A, Chou LH, Lan DH, Dizon GV, Hsieh C, Yeh CC, Liu CL, Chang Y. Surface PEGylation via Ultrasonic Spray Deposition for the Biofouling Mitigation of Biomedical Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:225-234. [PMID: 35014814 DOI: 10.1021/acsabm.1c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Air plasma and spray technology are common methods for surface modification. In this study, air plasma is used to generate hydroxyl groups on various material surfaces. Then random copolymers of styrene and ethylene glycol methacrylate (PS-r-PEGMA) are spray-coated to achieve coating densities ranging between 0.1 and 0.6 mg/cm2. PS50-r-PEGMA50 led to the best overall antifouling properties, while a coating density of 0.3 mg/cm2 was enough to significantly reduce biofouling. This surface modification technique enabled efficient modification of a wide range of materials and biofouling reduction by at least 75% on polymeric surfaces (polystyrene, polyvinylidene fluoride, poly(tetrafluoroethylene), polydimethylsiloxane), metallic surfaces (steel, titanium alloy), or ceramic surface (glass). Applied to the modification of well plate used for blood-typing, this antifouling modification permitted to greatly increase the signal sensitivity (×4).
Collapse
Affiliation(s)
- Shuo-Hsi Tang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Li-Hui Chou
- Department of Chemical and Materials Engineering, National Central University, Taipei 32001, Taiwan R.O.C
| | - Ding-Hung Lan
- Department of Chemical and Materials Engineering, National Central University, Taipei 32001, Taiwan R.O.C
| | - Gian Vincent Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Chun Hsieh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Chih-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| |
Collapse
|