1
|
Wierzbicka E, Vaghefinazari B, Mohedano M, Visser P, Posner R, Blawert C, Zheludkevich M, Lamaka S, Matykina E, Arrabal R. Chromate-Free Corrosion Protection Strategies for Magnesium Alloys-A Review: Part II-PEO and Anodizing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238515. [PMID: 36500010 PMCID: PMC9737229 DOI: 10.3390/ma15238515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 05/18/2023]
Abstract
Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for at least a couple of decades. However, surface treatment systems with equivalent efficacies to that of Cr(VI)-based ones have only begun to emerge much more recently. It is still proving challenging to find sufficiently protective replacements for Cr(VI) that do not give rise to safety concerns related to corrosion, especially in terms of fulfilling the requirements of the transportation industry. Additionally, in overcoming these obstacles, the advantages of newly introduced technologies have to include not only health safety but also need to be balanced against their added cost, as well as being environmentally friendly and simple to implement and maintain. Anodizing, especially when carried out above the breakdown potential (technology known as Plasma Electrolytic Oxidation (PEO)) is an electrochemical oxidation process which has been recognized as one of the most effective methods to significantly improve the corrosion resistance of Mg and its alloys by forming a protective ceramic-like layer on their surface that isolates the base material from aggressive environmental agents. Part II of this review summarizes developments in and future outlooks for Mg anodizing, including traditional chromium-based processes and newly developed chromium-free alternatives, such as PEO technology and the use of organic electrolytes. This work provides an overview of processing parameters such as electrolyte composition and additives, voltage/current regimes, and post-treatment sealing strategies that influence the corrosion performance of the coatings. This large variability of the fabrication conditions makes it possible to obtain Cr-free products that meet the industrial requirements for performance, as expected from traditional Cr-based technologies.
Collapse
Affiliation(s)
- Ewa Wierzbicka
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Functional Materials and Hydrogen Technology, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego Street 2, 00-908 Warsaw, Poland
| | - Bahram Vaghefinazari
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Marta Mohedano
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Ralf Posner
- Henkel AG & Co. KGaA, 40191 Düsseldorf, Germany
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Mikhail Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Sviatlana Lamaka
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Endzhe Matykina
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raúl Arrabal
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Wang Z, Liu B, Yin B, Zheng Y, Tian Y, Wen P. Comprehensive review of additively manufactured biodegradable magnesium implants for repairing bone defects from biomechanical and biodegradable perspectives. Front Chem 2022; 10:1066103. [PMID: 36523749 PMCID: PMC9745192 DOI: 10.3389/fchem.2022.1066103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 10/21/2023] Open
Abstract
Bone defect repair is a complicated clinical problem, particularly when the defect is relatively large and the bone is unable to repair itself. Magnesium and its alloys have been introduced as versatile biomaterials to repair bone defects because of their excellent biocompatibility, osteoconductivity, bone-mimicking biomechanical features, and non-toxic and biodegradable properties. Therefore, magnesium alloys have become a popular research topic in the field of implants to treat critical bone defects. This review explores the popular Mg alloy research topics in the field of bone defects. Bibliometric analyses demonstrate that the degradation control and mechanical properties of Mg alloys are the main research focus for the treatment of bone defects. Furthermore, the additive manufacturing (AM) of Mg alloys is a promising approach for treating bone defects using implants with customized structures and functions. This work reviews the state of research on AM-Mg alloys and the current challenges in the field, mainly from the two aspects of controlling the degradation rate and the fabrication of excellent mechanical properties. First, the advantages, current progress, and challenges of the AM of Mg alloys for further application are discussed. The main mechanisms that lead to the rapid degradation of AM-Mg are then highlighted. Next, the typical methods and processing parameters of laser powder bed fusion fabrication on the degradation characteristics of Mg alloys are reviewed. The following section discusses how the above factors affect the mechanical properties of AM-Mg and the recent research progress. Finally, the current status of research on AM-Mg for bone defects is summarized, and some research directions for AM-Mg to drive the application of clinical orthopedic implants are suggested.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Bangzhao Yin
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Additive Manufacturing Research and Applications. METALS 2022. [DOI: 10.3390/met12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Additive Manufacturing (AM) has undergone somewhat of a revolution over the last decade and it has now evolved into a viable industrial manufacturing solution, able to create complex geometries which are unachievable with traditional manufacturing methods [...]
Collapse
|
4
|
Selective Laser Melting of Pure Ag and 925Ag Alloy and Their Thermal Conductivity. CRYSTALS 2022. [DOI: 10.3390/cryst12040480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Due to the high reflectivity of Ag to infrared lasers, there is little research focused on the manufacturing of Ag and Ag alloys by selective laser melting (SLM) technique. In this paper, the manufacturing characteristics, microstructure, and thermal conductivity of SLMed Ag, 925Ag, and their heat-treated parts were studied. With the suitable processing parameters, Ag and 925Ag samples with relative densities of 91.06% and 96.56%, respectively, were obtained. Due to the existence of non-molten particles inside the samples and local high energy density of the laser during the processing, a large number of irregular pores and micropores were formed in the microstructures. XRD analysis shows that no phase transition occurred in the annealed Ag and solution-treated 925Ag parts, as compared to their as-built conditions. The SLMed Ag exhibited fine equiaxed grains, while both columnar grains and elongated lath grains existed in the SLMed 925Ag parts. The annealed Ag and solution-treated 925Ag exhibited large equiaxed grains. Due to the grain growth that occurred in the microstructure, the thermal conductivity of Ag increased by 11.35% after completing the annealing treatment. However, that of 925Ag decreased by 17.14% after completing the solid solution treatment, due to the precipitation of the strengthening phase at grain boundaries. A comparison of the thermal conductivities of Ag and 925Ag shows that the influence of the materials on the obtained thermal conductivities was more pronounced than that of the porosity.
Collapse
|
5
|
Bondareva J, Dubinin ON, Kuzminova YO, Shpichka AI, Kosheleva NV, Lychagin AV, Shibalova AA, Pozdnyakov AA, Akhatov I, Timashev P, Evlashin SA. Biodegradable iron-silicon implants produced by additive manufacturing. Biomed Mater 2022; 17. [PMID: 35334477 DOI: 10.1088/1748-605x/ac6124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Due to many negative and undesirable side effects from the use of permanent implants, the development of temporary implants based on biocompatible and biodegradable materials is a promising area of modern medicine. In the presented study, we have investigated complex-shaped iron-silicon (Fe-Si) scaffolds that can be used as potential biodegradable framework structures for creating solid implants for bone grafting. Since iron and silicon are biocompatible materials, and their alloy should also have biocompatibility. It has been demonstrated that cells UC-MSC and 3T3 were attached to, spread, and proliferated on the Fe-Si scaffolds' surface. Most of UC-MSC and 3T3 remained viable, only single dead cells were observed. According to the results of biological testing, the scaffolds have shown that deposition of calcium phosphate particles occurs on day one in the scaffold at the defect site that can be used as a primary marker of osteodifferentiation. These results demonstrate that the 3D-printed porous iron-silicon (Fe-Si) alloy scaffolds are promising structures for bone grafting and regeneration.
Collapse
Affiliation(s)
- Julia Bondareva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Oleg N Dubinin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Yulia O Kuzminova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| | - Anastasia I Shpichka
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Nastasya V Kosheleva
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Alexey V Lychagin
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Anastasia A Shibalova
- FSBSI Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, Moscow, 119991, RUSSIAN FEDERATION
| | - Artem A Pozdnyakov
- I M Sechenov First Moscow State Medical University Institute of Regenerative Medicine, 8-2 Trubetskaya St, Moscow, 119991, Russia, Moskva, Moskóvskaâ óblast', 119991, RUSSIAN FEDERATION
| | - Iskander Akhatov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, Moscow, 121205, RUSSIAN FEDERATION
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, RUSSIAN FEDERATION
| | - Stanislav Alexandrovich Evlashin
- Center for Design, Manufacturing and Materials, Skoltech, Bolshoy Boulevard 30, bld. 1, Moscow, Skolkovo, 121205, RUSSIAN FEDERATION
| |
Collapse
|
6
|
Fabrication of Silica Optical Fibers: Optimal Control Problem Solution. FIBERS 2021. [DOI: 10.3390/fib9120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, a new approach to solving problems of optimal control of manufacture procedures for the production of silica optical fiber are proposed. The procedure of silica tubes alloying by the Modified Chemical Vapor Deposition (MCVD) method and optical fiber drawing from a preform are considered. The problems of optimal control are presented as problems of controlling distributed systems with objective functionals and controls of different types. Two problems are formulated and solved. The first of them is the problem of the temperature field optimizing in the silica tubes alloying process in controlling the consumption of the oxygen–hydrogen gas mixture (in the one- and two-dimensional statements), the second problem is the geometric optimization of fiber shape in controlling the drawing velocity of the finished fiber. In both problems, while using an analog to the method of Lagrange, the optimality systems in the form of differential problems in partial derivatives are obtained, as well as formulas for finding the optimal control functions in an explicit form. To acquire optimality systems, the qualities of lower semicontinuity, convexity, and objective functional coercivity are applied. The numerical realization of the obtained systems is conducted by using Comsol Multiphysics.
Collapse
|