1
|
Kilina P, Kuchumov AG, Sirotenko L, Vassilouk V, Golovin S, Drozdov A, Sadyrin EV. Influence of porous titanium-based jaw implant structure on osseointegration mechanisms. J Mech Behav Biomed Mater 2024; 160:106724. [PMID: 39303419 DOI: 10.1016/j.jmbbm.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The reconstruction of maxillofacial defects caused by anomalies, fractures, or cancer is challenging for dentofacial surgeons. To produce efficient, patient-specific implants with long-term performance and biological suitability, numerous methods of manufacturing are utilized. Because additive manufacturing makes it possible to fabricate complex pore structure samples, it is now recognized as an acceptable option to design customized implants. It is well recognized that a porous structure with proper design promotes accelerated cell proliferation, which enhances bone remodeling. Porosity can also be employed to modify the mechanical characteristics of fabricated implants. Thus, design and choice of rational lattice structure is an important task. The influence of the structure of jaw implants made of highly porous titanium-based materials on their mechanical properties and bone tissue growth was studied. Based on a 3D computer model of Wigner-Seitz lattice structure, the model samples were fabricated from Ti6Al4V powder by selective laser melting to characterize the mechanical properties of the samples depending on their macroporosity. Then two types of jaw bone implants were manufactured to conduct studies of bone tissue ingrowth when implanted in laboratory animals. The research was carried out in several stages: design and production of the implants for replacing incomplete defects of the lower jaw; implantation of SLM-printed implants in laboratory animals into an artificially produced defect of the lower jaw; analysis of the degree of fixation of the "implant - bone" connection (for implantation periods from 2 weeks to 9 months). During the research, Ti-alloy structures with cell diameters of 2-3 mm and macroporosity of 90-97% mimicking the spongy structure of trabecular bone tissue, were characterized by a compressive strength of 12.47-37.5 MPa and an elastic modulus of 0.19-1.23 GPa, corresponding to the mechanical properties of bone tissue. Active processes of tissue growth into implant cells were detected 2 weeks after implantation, the significant differences in the volume and types of filling tissue depending on the size of the cell were described. Recommendations for choosing the cell size depending on the type of bone tissue damage were given. When using SLM-printed implants with lattice structure (cell sizes from 1 to 3 mm), an active osteosynthesis processes occurred, which culminated in the formation of bone tissue inside the implant cells 9 months after implantation, with 68% of the samples characterized by the maximum degree of implant fixation. Implants with 3 mm cells with macropores diameters of 850 μm were recommended for replacing cavities after removal of perihilar cysts. To replace complete and partial defects, it was recommended to use implants with a cell size of 2 and 3 mm.
Collapse
Affiliation(s)
- Polina Kilina
- Department of Innovative Engineering Technologies, Perm National Research Polytechnic University, 614990, Perm, 29 Komsomolskiy Avenue, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, 614990, Perm, 11 Professor Pozdeev Street, Russia.
| | - Alex G Kuchumov
- Biofluids Laboratory, Perm National Research Polytechnic University, 614990, Perm, 11 Professor Pozdeev Street, Russia; Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, 614990, Perm, 29 Komsomolskiy Avenue, Russia.
| | - Lyudmila Sirotenko
- Department of Innovative Engineering Technologies, Perm National Research Polytechnic University, 614990, Perm, 29 Komsomolskiy Avenue, Russia.
| | - Vladimir Vassilouk
- Department of Maxillofacial Surgery, Perm State Medical University, 614990, Perm, 29 Petropavlovskaya Street, Russia.
| | - Sergey Golovin
- Bioengineering and Veterinary Medicine Faculty, Don State Technical University, 344000, Rostov-on-Don, 1 Gagarin Square, Russia
| | - Andrey Drozdov
- Department of Innovative Engineering Technologies, Perm National Research Polytechnic University, 614990, Perm, 29 Komsomolskiy Avenue, Russia; Biofluids Laboratory, Perm National Research Polytechnic University, 614990, Perm, 11 Professor Pozdeev Street, Russia
| | - Evgeniy V Sadyrin
- Laboratory for Mechanics of Biomaterials, Don State Technical University, 344000, Rostov-on-Don, 1 Gagarin Square, Russia.
| |
Collapse
|
2
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Chronic exposure to TiO 2 micro- and nano particles: A biochemical and histopathological experimental study. J Biomed Mater Res B Appl Biomater 2024; 112:e35443. [PMID: 38968028 DOI: 10.1002/jbm.b.35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/08/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 μm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- CONICET, Buenos Aires, Argentina
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Guillermo Maglione
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | | | - Fernando Brites
- CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Faramarzi M, Shabgard S, Khalili V, Ege D. Exploring the effect of chlorhexidine concentration on the biocorrosion behavior of Ti6Al4V for dental implants. Microsc Res Tech 2024; 87:1552-1565. [PMID: 38430214 DOI: 10.1002/jemt.24538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Corrosion of dental implants is one of the most critical factors in the failure of implant treatments. Generally, corrosion depends on the type of material used in implants and the chemical composition of the oral environment. Due to the antibacterial activities, mouthwashes and chlorhexidine gels are often used after implant surgery. Ti6Al4V is commonly used in manufacturing dental implants. The present study aims to investigate the corrosion behavior of the Ti6Al4V alloy under different concentrations of chlorhexidine (0.12%, 0.2%,and 2%) during 2- and 24-h immersion. This way corrosion may be minimized while obtaining an antibacterial environment around the implant. In this regard, the electrochemical behavior of the specimens was investigated using polarization and impedance tests, and then their morphology, cross-section and nano-tribological behavior were evaluated using atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and nano-scratch test. The results show that using chlorhexidine solution with a concentration of 0.12% could yield a lower corrosion rate and material loss after implant surgery. RESEARCH HIGHLIGHTS: Open circuit potential values increase with immersion time, which suggests multistage passivation of the surface during immersion in chlorhexidine. Specimens in 0.12% chlorhexidine show improved thermodynamic corrosion resistance. Nano-scratch testing demonstrates higher scratch resistance for specimens in 0.12% chlorhexidine solution after 2-h immersion. Higher chlorhexidine concentration than 0.12% and longer immersion times decrease the resistance of the formed passive layer.
Collapse
Affiliation(s)
- Masoumeh Faramarzi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Shabgard
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Khalili
- Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany
| | - Duygu Ege
- Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
4
|
Kandaswamy E, Harsha M, Joshi VM. Titanium corrosion products from dental implants and their effect on cells and cytokine release: A review. J Trace Elem Med Biol 2024; 84:127464. [PMID: 38703537 DOI: 10.1016/j.jtemb.2024.127464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Titanium is considered to be an inert material owing to the ability of the material to form a passive titanium oxide layer. However, once the titanium oxide layer is lost, it can lead to exposure of the underlying titanium substructure and can undergo corrosion. SUMMARY The article explores the role of titanium ions and particles from dental implants on cells, cytokine release, and on the systemic redistribution of these particles as well as theories proposed to elucidate the effects of these particles on peri-implant inflammation based on evidence from in-vitro, human, and animal studies. Titanium particles and ions have a pro-inflammatory and cytotoxic effect on cells and promote the release of pro-inflammatory mediators like cytokines. Three theories to explain etiopathogenesis have been proposed, one based on microbial dysbiosis, the second based on titanium particles and ions and the third based on a synergistic effect between microbiome and titanium particles on the host. CONCLUSION There is clear evidence from in-vitro and limited human and animal studies that titanium particles released from dental implants have a detrimental effect on cells directly and through the release of pro-inflammatory cytokines. Future clinical and translational studies are required to clarify the role of titanium particles and ions in peri-implant inflammation and the etiopathogenesis of peri-implantitis.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA
| | - M Harsha
- Department of Oral Pathology & Microbiology, Yogita Dental College & Hospital, Naringi Riverside, At Post Tal Dist. SH104, Khed, Maharashtra 415709, India
| | - Vinayak M Joshi
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
5
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
6
|
Güler Ö, Boyrazlı M, Albayrak MG, Güler SH, Ishihara T, Edalati K. Photocatalytic Hydrogen Evolution of TiZrNbHfTaO x High-Entropy Oxide Synthesized by Mechano-Thermal Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:853. [PMID: 38399104 PMCID: PMC10890298 DOI: 10.3390/ma17040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
One of the most promising solutions to slow down CO2 emissions is the use of photocatalysis to produce hydrogen as a clean fuel. However, the efficiency of the photocatalysts is not at the desired level, and they usually need precious metal co-catalysts for reactions. In this study, to achieve efficient photocatalytic hydrogen production, a high-entropy oxide was synthesized by a mechano-thermal method. The synthesized high-entropy oxide had a bandgap of 2.45 eV, which coincided with both UV and visible light regions. The material could successfully produce hydrogen from water under light, but the main difference to conventional photocatalysts was that the photocatalysis proceeded without a co-catalyst addition. Hydrogen production increased with increasing time, and at the end of the 3 h period, 134.76 µmol/m2 h of hydrogen was produced. These findings not only introduce a new method for producing high-entropy photocatalysts but also confirm the high potential of high-entropy photocatalysts for hydrogen production without the need for precious metal co-catalysts.
Collapse
Affiliation(s)
- Ömer Güler
- Rare Earth Elements Application and Research Center, Munzur University, Tunceli 62000, Turkey;
| | - Mustafa Boyrazlı
- Metallurgical and Materials Engineering Department, Engineering Faculty, Fırat University, Elazig 23119, Turkey; (M.B.); (M.G.A.)
| | - Muhammet Gökhan Albayrak
- Metallurgical and Materials Engineering Department, Engineering Faculty, Fırat University, Elazig 23119, Turkey; (M.B.); (M.G.A.)
| | - Seval Hale Güler
- Rare Earth Elements Application and Research Center, Munzur University, Tunceli 62000, Turkey;
| | - Tatsumi Ishihara
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan;
| | - Kaveh Edalati
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
7
|
Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
|
8
|
Witek L, Vivekanand Nayak V, Rodriguez Colon R, Torroni A, Demetriou MD, Coelho PG. An in vivo preclinical study assessing biocompatibility of Pd-based bulk metallic glass. Biomed Mater Eng 2022; 34:215-223. [DOI: 10.3233/bme-221392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The bulk metallic glass (BMG), Pd79Ag3.5P6Si9.5Ge2, has a high fracture toughness and has been found to accommodate post-yield stress, unlike most other BMG. Moreover, due to its greater noble gas composition it has a intrinsic corrosion resistance, ideal for dental and orthopedic implants. OBJECTIVE: This present study aimed to evaluate the in vivo application of Pd79Ag3.5P6Si9.5Ge2 in a large translational sheep model to assess its efficacy to be utilized as an endosteal device. METHODS: Twelve implants in the form of cylindrical rods (3 mm in diameter) were produced through rapid quenching. Each sheep (n = 12) received one osteotomy in the mandibular region using rotary instrumentation, which was subsequently filled with Pd79Ag3.5P6Si9.5Ge2. After 6- and 24-weeks the animals were euthanized, and samples collected en bloc to conduct histomorphometric analysis. The level/degrees of osseointegration were assessed through bone-to-implant contact (BIC). RESULTS: Favorable BIC was observed with fibrous connective tissue layers at both 6- and 24-weeks. Bone along with interfacial remodeling was observed in proximity with the metallic glass surface at 6 weeks with higher degrees of bone organization being observed at the later healing time, 24 weeks. CONCLUSIONS: The introduced BMG revealed potential to serve as an alternative biomaterial to commonly used Ti alloys given its unique combination of toughness and strength.
Collapse
Affiliation(s)
- Lukasz Witek
- , , New York University College of Dentistry, , , USA
- , New York University Tandon School of Engineering, , , USA
| | - Vasudev Vivekanand Nayak
- , , New York University College of Dentistry, , , USA
- , New York University Tandon School of Engineering, , , USA
| | | | | | | | | |
Collapse
|
9
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. CAD/CAM Abutments versus Stock Abutments: An Update Review. PROSTHESIS 2022; 4:468-479. [DOI: 10.3390/prosthesis4030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
With the evolution of CAD/CAM technology, custom titanium and/or zirconia abutments are increasingly being used, leading to several comparisons in the literature, both mechanical and aesthetic, to evaluate performance differences between these two types of abutments. Therefore, the aim of this comprehensive review is to present the most recent data on the latest comparisons between CAD/CAM and stock abutment applications. The PICO model was used to perform this review, through a literature search of the PubMed (MEDLINE) and Scopus electronic databases. CAD/CAM abutments allow individualization of abutment parameters with respect to soft tissue, allow increased fracture toughness, predict the failure mode, show no change in the fracture toughness over time, reduce the prosthetic steps, and reduce the functional implant prosthesis score and pain perceived by patients in the early stages. The advantages associated with the use of stock abutments mainly concern the risk of corrosion, time spent, cost, and fit, evaluated in vitro, in the implant–abutment connection. Equal conditions are present regarding the mechanical characteristics during dynamic cycles, screw loss, radiographic fit, and degree of micromotion. Further randomized controlled clinical trials should be conducted to evaluate the advantages reported to date, following in vitro studies about titanium and/or zirconia stock abutments.
Collapse
|
10
|
Electrogalvanism in Oral Implantology: A Systematic Review. Int J Dent 2022; 2022:4575416. [PMID: 36034476 PMCID: PMC9410998 DOI: 10.1155/2022/4575416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose The objective of this work is to study galvanic corrosion of different couples of prosthetic and implant alloys through the realization of a systematic review. Materials and Methods An electronic search was performed on Pubmed, Google Scholar, Scopus, ScienceDirect, EbscoHost, and Web of Science for published studies related to electrogalvanism in oral implantology. The keywords used were “dental implants” and “galvanic corrosion.” Two independent readers read the scientific articles. Results From 65 articles initially identified, only 19 articles met the eligibility criteria. The evaluation of the selected articles allowed us to determine the parameters compared, such as the resistance to galvanic corrosion, the influence of fluorine and pH on the electrochemical behavior, and the release of metal ions and their cytotoxicity. Indeed, Ti6Al4V and precious alloys coupled to titanium were found to be the most resistant to galvanic corrosion, followed by cobalt-chromium alloys and nickel-chromium alloys which were least resistant. This resistance decreases with increasing fluorine concentration and with decreasing pH of the environment. Discussion. The implant-prosthetic system's galvanic resistance is influenced by many intrinsic factors: alloy composition and surface condition, as well as extrinsic factors such as pH variations and amount of fluorine. The effects of oral electrogalvanism are essentially the result of two main criteria: effects due to electric currents generated by corrosion and effects due to the release of metal ions by corrosion. Conclusion To avoid this phenomenon, it is wise to follow the proposed recommendations such as the use of the minimum of distinct metals as much as possible, favoring the commercially pure titanium implant of Ti6Al4V, opting for the choice of couples, titanium/titanium, favoring daily mouthwashes of 227 ppm of fluoride, and avoiding fluorinated acid solutions.
Collapse
|
11
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
12
|
Corrosion Resistance of 3D Printed Ti6Al4V Gyroid Lattices with Varying Porosity. MATERIALS 2022; 15:ma15144805. [PMID: 35888273 PMCID: PMC9316743 DOI: 10.3390/ma15144805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Corrosion of medical implants is a possible failure mode via induced local inflammatory effects, systemic deposition and corrosion related mechanical failure. Cyclic potentiodynamic polarisation (CPP) testing was utilized to evaluate the effect of increased porosity (60% and 80%) and decreased wall thickness in gyroid lattice structures on the electrochemical behaviour of LPBF Ti6Al4V structures. The use of CPP allowed for the landmarks of breakdown potential, resting potential and vertex potential to be analysed, as well as facilitating the construction of Tafel plots and qualitative Goldberg analysis. The results indicated that 60% gyroid samples were most susceptible to the onset of pitting corrosion when compared to 80% gyroid and solid samples. This was shown through decreased breakdown and vertex potentials and were found to correlate to increased lattice surface area to void volume ratio. Tafel plots indicated that despite the earlier onset of pitting corrosion, both gyroid test groups displayed lower rates of corrosion per year, indicating a lower severity of corrosion. This study highlighted inherent tradeoffs between lattice optimisation and corrosion behaviour with a potential parabolic link between void volume, surface area and corrosion being identified. This potential link is supported by 60% gyroid samples having the lowest breakdown potentials, but investigation into other porosity ranges is suggested to support the hypothesis. All 3D printed materials studied here showed breakdown potentials higher than ASTM F2129's suggestion of 800 mV for evaluation within the physiological environment, indicating that under static conditions pitting and crevice corrosion should not initiate within the body.
Collapse
|
13
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
14
|
Li L, Sun W, Yu J, Lei W, Zeng H, Shi B. Effects of titanium dioxide microparticles and nanoparticles on cytoskeletal organization, cell adhesion, migration, and proliferation in human gingival fibroblasts in the presence of lipopolysaccharide. J Periodontal Res 2022; 57:644-659. [PMID: 35438207 DOI: 10.1111/jre.12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Titanium wear particles may participate in the etiology of peri-implantitis. However, the influence of titanium wear particles on biological behavior of human gingival fibroblasts (HGFs) in the presence of LPS is still not clear. The present study demonstrated the effects of titanium dioxide micro- and nanoparticles (TiO2 MPs and NPs) on HGF cell viability, cytoskeletal organization, adhesion, migration, and proliferation in vitro, and LPS was used to mimic the in vivo condition. METHODS Primary HGFs were treated with TiO2 MPs (primary particle size <5 μm, 0.1 mg/ml) and NPs (primary particle size <100 nm, 0.1 mg/ml) with or without 1 μg/ml LPS. The effects of TiO2 MPs and NPs on HGFs cell viability was measured by CCK-8 assay. The proliferation of HGF was detected by Ki67 nuclear staining. The confocal laser scanning microscope (CLSM) was used to detect the internalization of TiO2 MPs and NPs in HGFs as well as the arrangement of F-actin, vinculin, and vimentin organization. Wound healing assay and transwell assay were performed to measure the migration of HGFs induced by TiO2 MPs and NPs. Cell adhesion was measured using fibronectin-coated plates. The relative mRNA and protein expression of adhesion relative protein such as focal adhesion kinase (FAK), fibronectin (FN), and type I collagen (COL1) were measured using quantitative RT-PCR and western blot analysis. One-way analysis of variance (ANOVA) and Student's t-test were used to analyze the statistical significance, and p < .05 was considered statistically significant. RESULTS TiO2 NPs significantly inhibited HGF cell viability, proliferation, and migration compared with TiO2 MPs group and control group. Compared with control group (2.64 ± 0.09), the mean absorbance of the cells in 1 mg/ml TiO2 MPs group and 0.25 mg/ml TiO2 NPs group were significantly decreased to 1.93 ± 0.33 (p < .05) and 2.22 ± 0.18 (p < .01), respectively. The cytoskeleton disruption was found in TiO2 NPs group. The mRNA and protein expression were significantly downregulated by TiO2 NPs. Furthermore, both TiO2 NPs and MPs induced more adverse effects on HGFs in the presence of LPS. CONCLUSION Our results indicate that TiO2 NPs but not TiO2 MPs significantly disrupt the cytoskeletal organization and inhibited cell adhesion, migration, and proliferation of HGFs. However, in the presence of LPS, TiO2 MPs, and TiO2 NPs enhance these negative effects in HGFs. Titanium wear particles are probably involved in the initiation and progression of peri-implant diseases.
Collapse
Affiliation(s)
- Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenlong Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials. CURRENT ORAL HEALTH REPORTS 2022; 9:7-21. [PMID: 35127334 PMCID: PMC8799988 DOI: 10.1007/s40496-022-00306-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Purpose of Review Despite advanced technologies to avoid corrosion of dental implants, the mechanisms toward the release of metals and their role in the onset of peri-implant diseases are still under-investigated. Effective knowledge on the etiopathogenesis of corrosive products and preventive strategies mitigating the risks for surface degradation are thus in dire need. This review aimed to summarize evidence toward biocorrosion in the oral environment and discuss the current strategies targeting the improvement of dental implants and focusing on the methodological and electrochemical aspects of surface treatments and titanium-based alloys. Recent Findings Recent studies suggest the existence of wear/corrosion products may correlate with peri-implantitis progress by triggering microbial dysbiosis, the release of pro-inflammatory cytokines, and animal bone resorption. Furthermore, current clinical evidence demonstrating the presence of metal-like particles in diseased tissues supports their possible role as a risk factor for peri-implantitis. For instance, to overcome the drawback of titanium corrosion, researchers are primarily focusing on developing corrosion-resistant alloys and coatings for dental implants by changing their physicochemical features. Summary The current state-of-art discussed in this review found corrosion products effective in affecting biofilm virulence and inflammatory factors in vitro. Controversial and unstandardized data are limitations, making the premise of corrosion products being essential for peri-implantitis onset. On the other hand, when it comes to the strategies toward reducing implant corrosion rate, it is evident that the chemical and physical properties are crucial for the in vitro electrochemical behavior of the implant material. For instance, it is foreseeable that the formation of films/coatings and the incorporation of some functional compounds into the substrate may enhance the material’s corrosion resistance and biological response. Nevertheless, the utmost challenge of research in this field is to achieve adequate stimulation of the biological tissues without weakening its protective behavior against corrosion. In addition, the translatability from in vitro findings to clinical studies is still in its infancy. Therefore, further accumulation of high-level evidence on the role of corrosion products on peri-implant tissues is expected to confirm the findings of the present review besides the development of better methods to improve the corrosion resistance of dental implants. Furthermore, such knowledge could further develop safe and long-term implant rehabilitation therapy.
Collapse
|
16
|
Gherasim O, Grumezescu AM, Grumezescu V, Andronescu E, Negut I, Bîrcă AC, Gălățeanu B, Hudiță A. Bioactive Coatings Loaded with Osteogenic Protein for Metallic Implants. Polymers (Basel) 2021; 13:4303. [PMID: 34960852 PMCID: PMC8703935 DOI: 10.3390/polym13244303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoconductive and osteoinductive coatings represent attractive and tunable strategies towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells' development, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover, the addition of osteogenic proteins represents the next step towards the fabrication of advanced biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially contribute to the new bone formation. In this respect, laser-processed composites, based on PLA, Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic implants. The nanostructured coatings proved superior ability to promote the adhesion, viability, and proliferation of osteoprogenitor cells, without affecting their normal development and further sustaining the osteogenic differentiation of the cells. Our results are complementary to previous studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and orthodontic applications.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| |
Collapse
|
17
|
Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutions. MATERIALS 2021; 14:ma14237404. [PMID: 34885558 PMCID: PMC8658691 DOI: 10.3390/ma14237404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The corrosion of implant biomaterials is a well-known critical issue when they are in contact with biological fluids. Therefore, the reactivity of Ti6Al4V implant biomaterials is monitored during immersion in a Hanks’ physiological solution without and with added metabolic compounds, such as lactic acid, hydrogen peroxide, and a mixture of the two. Electrochemical characterization is done by measuring the open circuit potential and electrochemical impedance spectroscopy performed at different intervals of time. Electrochemical results were completed by morphological and compositional analyses as well as X-ray diffraction before and after immersion in these solutions. The results indicate a strong effect from the inflammatory product and the synergistic effect of the metabolic lactic acid and hydrogen peroxide inflammatory compound on the reactivity and corrosion resistance of an implant titanium alloy.
Collapse
|
18
|
Liu J, Mohd Rafiq NB, Wong LM, Wang S. Surface Treatment and Bioinspired Coating for 3D-Printed Implants. Front Chem 2021; 9:768007. [PMID: 34869211 PMCID: PMC8636835 DOI: 10.3389/fchem.2021.768007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) printing technology has developed rapidly and demonstrates great potential in biomedical applications. Although 3D printing techniques have good control over the macrostructure of metallic implants, the surface properties have superior control over the tissue response. By focusing on the types of surface treatments, the osseointegration activity of the bone-implant interface is enhanced. Therefore, this review paper aims to discuss the surface functionalities of metallic implants regarding their physical structure, chemical composition, and biological reaction through surface treatment and bioactive coating. The perspective on the current challenges and future directions for development of surface treatment on 3D-printed implants is also presented.
Collapse
Affiliation(s)
| | | | | | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
19
|
Kheder W, Al Kawas S, Khalaf K, Samsudin A. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:182-189. [PMID: 34630776 PMCID: PMC8488597 DOI: 10.1016/j.jdsr.2021.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Titanium particles as a product of degradation have been detected in periimplant oral tissues and it has been assumed that implants were the source of these particles. Periimplantitis sites had higher concentrations of particles in comparison to healthy implant sites. Several factors have been identified in the degradation of dental implant surface, such as mechanical wear, contact with chemical agents, and the effects of biofilm adhesion. Titanium particles silently prompt the immune-system activation and generate a pro-inflammatory response in macrophages, T lymphocytes and monocytes. During the activation, inflammatory cytokines are released including, granulocyte-macrophage colony-stimulating factor (GM-CSF), prostaglandin, and TNF-α, IL-1β, IL-6. The nanoparticles depict unique features such as high level of biological reactivity and potentially harmful compared to microparticles since they have a relatively greater surface area to volume ratio. Allergic response to titanium as a cause of implant failure has not been well documented. Evidence demonstrating biological complication due to titanium particles release includes peri-implant tissue inflammation that lead terminally to implant loss. There is a biological probability for a relation between the presence of titanium particles and ions, biological complication, and corrosion, but there is no justifiable evidence for unidirectional series of causative actions.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khaled Khalaf
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - A.R. Samsudin
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
20
|
Contact Guidance Effect and Prevention of Microfouling on a Beta Titanium Alloy Surface Structured by Electron-Beam Technology. NANOMATERIALS 2021; 11:nano11061474. [PMID: 34199432 PMCID: PMC8227382 DOI: 10.3390/nano11061474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Nano- and micro-structuring of implantable materials constitute a promising approach to introduce mechanical contact guidance effect, drive cells colonization, as well as to prevent bacteria adhesion and biofilm aggregation, through antifouling topography. Accordingly, this paper aims to extend the application of e-beam surface texturing and nano-structuring to the beta titanium alloys, which are of great interest for biomedical implants because of the low Young modulus and the reduction of the stress shielding effect. The paper shows that surface texturing on the micro-scale (micro-grooves) is functional to a contact guidance effect on gingival fibroblasts. Moreover, nano-structuring, derived from the e-beam surface treatment, is effective to prevent microfouling. In fact, human fibroblasts were cultivated directly onto grooved specimens showing to sense the surface micro-structure thus spreading following the grooves’ orientation. Moreover, Staphylococcus aureus colonies adhesion was prevented by the nano-topographies in comparison to the mirror-polished control, thus demonstrating promising antifouling properties. Furthermore, the research goes into detail to understand the mechanism of microfouling prevention due to nano-topography and microstructure.
Collapse
|
21
|
Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin Oral Investig 2021; 25:1627-1640. [PMID: 33616805 DOI: 10.1007/s00784-021-03785-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This integrative review aimed to report the toxic effect of submicron and nano-scale commercially pure titanium (cp Ti) debris on cells of peri-implant tissues. MATERIALS AND METHODS A systematic search was carried out on the PubMed electronic platform using the following key terms: Ti "OR" titanium "AND" dental implants "AND" nanoparticles "OR" nano-scale debris "OR" nanometric debris "AND" osteoblasts "OR "cytotoxicity" OR "macrophage" OR "mutagenic" OR "peri-implantitis". The inclusion criteria involved articles published in the English language, until December 26, 2020, reporting the effect of nano-scale titanium particles as released from dental implants on the toxicity and damage of osteoblasts. RESULTS Of 258 articles identified, 14 articles were selected for this integrative review. Submicron and nano-scale cp Ti particles altered the behavior of cells in culture medium. An inflammatory response was triggered by macrophages, fibroblasts, osteoblasts, mesenchymal cells, and odontoblasts as indicated by the detection of several inflammatory mediators such as IL-6, IL-1β, TNF-α, and PGE2. The formation of a bioactive complex composed of calcium and phosphorus on titanium nanoparticles allowed their binding to proteins leading to the cell internalization phenomenon. The nanoparticles induced mutagenic and carcinogenic effects into the cells. CONCLUSIONS The cytotoxic effect of debris released from dental implants depends on the size, concentration, and chemical composition of the particles. A high concentration of particles on nanometric scale intensifies the inflammatory responses with mutagenic potential of the surrounding cells. CLINICAL RELEVANCE Titanium ions and debris have been detected in peri-implant tissues with different size, concentration, and forms. The presence of metallic debris at peri-implant tissues also stimulates the migration of immune cells and inflammatory reactions. Cp Ti and TiO2 micro- and nano-scale particles can reach the bloodstream, accumulating in lungs, liver, spleen, and bone marrow.
Collapse
|
22
|
A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures. METALS 2021. [DOI: 10.3390/met11020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of our study is to compare the behavior of two reprocessed dental alloys (NiCr and CoCr) at different temperatures considering the idea that food and drinks in the oral cavity create various compositions at different pH levels; the novelty is the investigation of temperature effect on corrosion parameters and ion release of dental alloys. Electrochemical stability was studied together with morphology, elemental composition and ions release determination. The results obtained are in good concordance: electrochemistry studies reveal that the corrosion rate is increasing by increasing the temperature. From SEM coupled with EDS, the oxide film formed on the surface of the alloys is stable at low temperatures and a trend to break after 310K. ICP-MS results evidence that in accordance with increasing temperature, the quantities of ions released from the alloys immersed in artificial saliva also increase, though they still remain small, less than 20 ppm.
Collapse
|