Lee TJ, Kim WJ. Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy.
MATERIALS (BASEL, SWITZERLAND) 2022;
15:7822. [PMID:
36363414 PMCID:
PMC9653910 DOI:
10.3390/ma15217822]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Severe plastic deformation via high-ratio differential speed rolling (HRDSR) was applied to the Ni-rich Ti-50.8Ni alloy. Application of HRDSR and a short annealing time of 5 min at 873 K leads to the production of a partially recrystallized microstructure with a small grain size of 5.1 μm. During the aging process for the annealed HRDSR sample at 523 K for 16 h, a high density of Ni3Ti4 particles was uniformly precipitated over the matrix, resulting in the formation of an R phase as the major phase at room temperature. The aged HRDSR sample exhibits excellent superelasticity and superelastic cyclability. This achievement can be attributed to an increase in strength through effective grain refinement and particle strengthening by Ni3Ti4 and a decrease in the critical stress for stress-induced martensite (B19') due to the presence of the R-phase instead of B2 as a major phase at room temperature. The currently proposed method for using HRDSR and post-deformation heat treatment allows for the production of Ni-rich NiTi alloys with excellent superelasticity in sheet form.
Collapse