2
|
Wyantuti S, Pratomo U, Manullang LA, Hendrati D, Hartati YW, Bahti HH. Development of differential pulse voltammetric method for determining samarium (III) through electroanalytical study of the metal ion in acetonitrile using Box-Behnken design. Heliyon 2021; 7:e06602. [PMID: 33898801 PMCID: PMC8056231 DOI: 10.1016/j.heliyon.2021.e06602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/29/2020] [Accepted: 03/23/2021] [Indexed: 11/03/2022] Open
Abstract
The development of methods for the efficient and reliable separation and routine analysis of rare-earth elements (REEs), including samarium (Sm), proceeds to draw in the interest of the many researchers, attributable to the similar physical and chemical properties of these elements. Note that although the voltammetric determination of Sm has been described in the literature, thus far, no chemometric and voltammetric methods for the quantification of the element in its mixtures with other lanthanides in an acetonitrile solution have been reported. This work was aimed toward the advancement of a method for the detection of Sm in acetonitrile, the intended function of which was to obtain a selective current response of Sm by Differential Pulse Voltammetry, utilizing the Box-Behnken experimental design, to identify the best conditions for the determination. In particular, the three selected factors for the experiment, namely the potential range, amplitude modulation, and the deposition time, were found to have optimal conditions of -1.5 to +1.0 V, 0.075 V, and 60 s, consecutively. The optimal conditions were observed to result in a selective current response for samarium with a detection limit of 2.25 mg/L and a limit of quantitation of 7.50 mg/L. Furthermore, the accuracy was 98.70% and the precision was found to be 1.91% in relative standard deviation (RSD), while the recovery was found to be 98.70%.
Collapse
Affiliation(s)
- Santhy Wyantuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| | - Uji Pratomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| | - Lastri A. Manullang
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| | - Diana Hendrati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| | - Husein H. Bahti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363 Indonesia
| |
Collapse
|
3
|
Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts 2021. [DOI: 10.3390/catal11010102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electrooxidation of urea plays a substantial role in the elimination of urea-containing wastewater and industrial urea. Here, we report the electrodeposition of nickel hydroxide catalyst on commercial carbon paper (CP) electrodes from dimethyl sulphoxide solvent (Ni(OH)2-DMSO/CP) for urea electrooxidation under alkaline conditions. The physicochemical features of Ni(OH)2-DMSO/CP catalysts using scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the Ni(OH)2-DMSO/CP catalyst shows nanoparticle features, with loading of <1 wt%. The cyclic voltammetry and electrochemical impedance spectroscopy revealed that the Ni(OH)2-DMSO/CP electrode has a urea oxidation onset potential of 0.33 V vs. Ag/AgCl and superior electrocatalytic performance, which is a more than 2-fold higher activity in comparison with the counterpart Ni(OH)2 catalyst prepared from the aqueous electrolyte. As expected, the enhancement in electrocatalytic activity towards urea was associated with the superficial enrichment in the electrochemically active surface area of the Ni(OH)2-DMSO/CP electrodes. The results might be a promising way to activate commercial carbon paper with efficient transition metal electrocatalysts, for urea electrooxidation uses in sustainable energy systems, and for relieving water contamination.
Collapse
|
4
|
Rudnev AV. Electrodeposition of lanthanides from ionic liquids and deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lanthanides belong to the most important raw materials and are highly demanded in high-tech industry. Low-temperature electrochemical deposition of lanthanides and lanthanide-based alloys for recycling and obtaining functional materials can provide a real alternative to the currently used high-temperature electrolysis of molten salts. The review summarizes the advancements in the field of electrodeposition of lanthanides from organic ionic systems, such as ionic liquids and deep eutectic solvents. The growing interest in these ionic systems is due to their excellent physicochemical properties, in particular non-volatility, thermal and electrochemical stability. The review also discusses further prospects and potential of the electrochemical approach for obtaining lanthanide-containing advanced materials.
The bibliography includes 219 references.
Collapse
|
5
|
Abstract
Our modern everyday life and thus our technical progress is based on a variety of metals [...]
Collapse
|