1
|
Znidi F, Morsy M, Uddin MN. Navigating challenges and solutions for metal-halide and carbon-based electrodes in perovskite solar cells (NCS-MCEPSC): An environmental approach. Heliyon 2024; 10:e32843. [PMID: 38988552 PMCID: PMC11233955 DOI: 10.1016/j.heliyon.2024.e32843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
The urgent need to shift to renewable energy is highlighted by rising global energy use and environmental issues like global warming from fossil fuel dependency. Perovskite solar cells (PSCs) stand out as a promising option, providing high efficiency and potential for cost-effective production. This study delves into the environmental concerns and viable solutions linked with metal-halide PSCs (M-PSCs) and carbon-based electrode PCSs (C-PSCs). It showcases the swift progress in PSC technology, highlighting its potential to deliver efficient and economical renewable energy options. Yet, the environmental implications of these technologies, especially the utilization of toxic lead (Pb) in M-PSCs and the issues of stability and degradation in C-PSCs, represent considerable hurdles for their broad application and sustainability. The paper details the recent advances in PSCs, focusing on enhancements in device efficiency and stability through innovative material combinations and device designs. Nonetheless, the environmental hazards linked to the dispersal of toxic substances from compromised or deteriorating PSCs into the ecosystem raise significant concerns. In particular, the risk of Pb from M-PSCs contaminating soil and aquatic ecosystems is a pressing issue for human and environmental health, spurring investigations into alternative materials and methods to diminish these impacts. The authors examine several strategies, including the introduction of Pb-free perovskites, encapsulation methods to block the escape of hazardous substances, and the recycling of PSC elements. The study stresses the necessity of aligning technological innovations with considerations for the environment and health, calling for ongoing research into PSC technologies that are sustainable and safe. This review highlights the need for detailed assessments of PSC technologies, focusing on their renewable energy contributions, environmental impacts, and strategies to mitigate these effects. The authors call for a cohesive strategy to develop PSCs that are efficient, cost-effective, eco-friendly, and safe for widespread use.
Collapse
Affiliation(s)
- Faycal Znidi
- Engineering and Physics Department, Texas A&M University, Texarkana, 7101 University Ave, Texarkana, TX, 75503, USA
| | - Mohamed Morsy
- Engineering and Physics Department, Texas A&M University, Texarkana, 7101 University Ave, Texarkana, TX, 75503, USA
| | - Md. Nizam Uddin
- Engineering and Physics Department, Texas A&M University, Texarkana, 7101 University Ave, Texarkana, TX, 75503, USA
| |
Collapse
|
2
|
Alami AH, Alashkar A, Abdelkareem MA, Rezk H, Masdar MS, Olabi AG. Perovskite Membranes: Advancements and Challenges in Gas Separation, Production, and Capture. MEMBRANES 2023; 13:661. [PMID: 37505028 PMCID: PMC10384722 DOI: 10.3390/membranes13070661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Perovskite membranes have gained considerable attention in gas separation and production due to their unique properties such as high selectivity and permeability towards various gases. These membranes are composed of perovskite oxides, which have a crystalline structure that can be tailored to enhance gas separation performance. In oxygen enrichment, perovskite membranes are employed to separate oxygen from air, which is then utilized in a variety of applications such as combustion and medical devices. Moreover, perovskite membranes are investigated for carbon capture applications to reduce greenhouse gas emissions. Further, perovskite membranes are employed in hydrogen production, where they aid in the separation of hydrogen from other gases such as methane and carbon dioxide. This process is essential in the production of clean hydrogen fuel for various applications such as fuel cells and transportation. This paper provides a review on the utilization and role of perovskite membranes in various gas applications, including oxygen enrichment, carbon capture, and hydrogen production.
Collapse
Affiliation(s)
- Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Adnan Alashkar
- Materials Science and Engineering Ph.D. Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Hegazy Rezk
- Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
3
|
Kumar M, Pawar V, Jha PK, Jha PA, Singh P. Compositional degradation with Br content in Cesium lead halide CsPbBrxI3-x. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Nguyen TM, Bark CW. Synthesis of Cobalt-Doped TiO 2 Based on Metal-Organic Frameworks as an Effective Electron Transport Material in Perovskite Solar Cells. ACS OMEGA 2020; 5:2280-2286. [PMID: 32064389 PMCID: PMC7016924 DOI: 10.1021/acsomega.9b03507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
In this study, Co-doped TiO2 was prepared successfully using a solvothermal method with trimesic acid (H3BTC) as an organic framework to form the Co-doped Ti metal-organic framework (Co-doped Ti-MOF). By thermally decomposing the Co-doped Ti-MOF in air, the framework template was removed, and porous Co-doped TiO2 was obtained. The crystal structure of the material was analyzed using X-ray diffraction. The morphology was examined using scanning electron microscopy (SEM) and focused ion beam SEM. The large specific surface area was determined to be 135.95 m2 g-1 using Brunauer-Emmett-Teller theory. Fourier transform infrared spectroscopy verified the presence of Ti-O-Ti and Co-O vibrations in the as-prepared sample. Furthermore, the results of UV-vis spectroscopy showed that doping with Co remarkably improved the absorption ability of Ti-MOF toward the visible-light region with a band gap energy of 2.38 eV (λ = 502 nm). Steady-state photoluminescence and electrochemical impedance spectroscopy were conducted to illustrate the improvement of electron transfer in the doped material further. The optimum power conversion efficiency of solar cells using 1 wt % Co-doped TiO2 as an electron transport layer was found to be 15.75%, while that of solar cells using commercial dyesol TiO2 is only 14.42%.
Collapse
Affiliation(s)
- Thi My
Huyen Nguyen
- Department of Electrical
Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Chung Wung Bark
- Department of Electrical
Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|
5
|
Jiang E, Ai Y, Yan J, Li N, Lin L, Wang Z, Shou C, Yan B, Zeng Y, Sheng J, Ye J. Phosphate-Passivated SnO 2 Electron Transport Layer for High-Performance Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36727-36734. [PMID: 31525907 DOI: 10.1021/acsami.9b11817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tin oxide (SnO2) is widely used in perovskite solar cells (PSCs) as an electron transport layer (ETL) material. However, its high surface trap density has already become a strong factor limiting PSC development. In this work, phosphoric acid is adopted to eliminate the SnO2 surface dangling bonds to increase electron collection efficiency. The phosphorus mainly exists at the boundaries in the form of chained phosphate groups, bonding with which more than 47.9% of Sn dangling bonds are eliminated. The reduction of surface trap states depresses the electron transport barriers, thus the electron mobility increases about 3 times when the concentration of phosphoric acid is optimized with 7.4 atom % in the SnO2 precursor. Furthermore, the stability of the perovskite layer deposited on the phosphate-passivated SnO2 (P-SnO2) ETL is gradually improved with an increase of the concentration. Due to the higher electron collection efficiency, the P-SnO2 ETLs can dramatically promote the power conversion efficiency (PCE) of the PSCs. As a result, the champion PSC has a PCE of 21.02%. Therefore, it has been proved that this simple method is efficient to improve the quality of ETL for high-performance PSCs.
Collapse
Affiliation(s)
- Ershuai Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuqian Ai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
- School of the Testing and Photoelectric Engineering , Nanchang Hangkong University , Nanchang 330063 , People's Republic of China
| | - Jin Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Nan Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Liujin Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| | - Zenggui Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| | - Chunhui Shou
- Zhejiang Energy Group R&D , Hangzhou , Zhejiang 310003 , People's Republic of China
| | - Baojie Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| | - Yuheng Zeng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| | - Jiang Sheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| | - Jichun Ye
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , People's Republic of China
| |
Collapse
|