1
|
Equal-Channel Angular Extrusion (ECAE): From a Laboratory Curiosity to an Industrial Technology. METALS 2020. [DOI: 10.3390/met10020244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a state-of-the-art and a retrospective view of the critical stages in the evolution of equal-channel angular extrusion (ECAE) from the original idea to a cost-effective industrial technology. These stages include optimization of the structure modification and material processing, development of the special tools, process commercialization, and a large-scale validation of the semi-continuous ECAE at the industrial floor. All aspects are extensively summarized, based on the author’s experience in the field, which spans almost half of a century. Special attention is paid to the processing of large batch billets. Practical examples illustrate industrial applications of ECAE. The scope for future development is also discussed.
Collapse
|
2
|
Through-Thickness Microstructure and Strain Distribution in Steel Sheets Rolled in a Large-Diameter Rolling Process. METALS 2020. [DOI: 10.3390/met10010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rolling condition for fabricating a low-carbon niobium-microalloyed steel sheet with an ultrafine-grained (UFG) structure was examined through rolling experiments and finite element analysis. A large-diameter rolling process was proposed to create a UFG structure. The rolling was conducted near the transformation point, Ar3, from austenite to ferrite. The Ar3 was measured at the surface and the center of the sheet. First, the through-thickness microstructure and equivalent strain distribution in a 1-pass rolled sheet 2.0 mm thick were examined. In the rolling experiments, the embedded pin method was employed to understand through-thickness deformation. The magnitude of the equivalent strain to obtain a UFG structure was estimated to be 2.0. Based on these results, the fabrication of a 2 mm UFG steel sheet by 3-pass rolling for an initial thickness of 14.5 mm was attempted by the proposed large-diameter rolling process.
Collapse
|