1
|
Fulton RL, Sawyer BR, Downs DM. RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:339-352. [PMID: 39434937 PMCID: PMC11491847 DOI: 10.15698/mic2024.10.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.
Collapse
Affiliation(s)
- Ronnie L. Fulton
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Bryce R. Sawyer
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Diana M Downs
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| |
Collapse
|
2
|
Rizzi G, Digiovanni S, Degani G, Barbiroli A, Di Pisa F, Popolo L, Visentin C, Vanoni MA, Ricagno S. Site-directed mutagenesis reveals the interplay between stability, structure, and enzymatic activity in RidA from Capra hircus. Protein Sci 2024; 33:e5036. [PMID: 38801230 PMCID: PMC11129622 DOI: 10.1002/pro.5036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.
Collapse
Affiliation(s)
- Giulia Rizzi
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Genny Degani
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'AmbienteUniversità degli Studi di MilanoMilanItaly
| | - Flavio Di Pisa
- Istituto di BiofisicaConsiglio Nazionale delle RicercheMilanItaly
| | - Laura Popolo
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Cristina Visentin
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Stefano Ricagno
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
- Institute of Molecular and Translational CardiologyI.R.C.C.S. Policlinico San DonatoSan Donato MilaneseItaly
| |
Collapse
|
3
|
Shen W, Downs DM. Tetrahydrofolate levels influence 2-aminoacrylate stress in Salmonella enterica. J Bacteriol 2024; 206:e0004224. [PMID: 38563759 PMCID: PMC11025330 DOI: 10.1128/jb.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.
Collapse
Affiliation(s)
- Wangchen Shen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
5
|
Keçeli Oğuz S, Has EG, Akçelik N, Akçelik M. Phenotypic impacts and genetic regulation characteristics of the DNA adenine methylase gene (dam) in Salmonella Typhimurium biofilm forms. Res Microbiol 2023; 174:103991. [PMID: 36113833 DOI: 10.1016/j.resmic.2022.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
In this study, transcriptional level gene expression changes in biofilm forms of Salmonella Typhimurium ATCC 14028 and its dam mutant were investigated by performing RNAseq analysis. As a result of these analyzes, a total of 233 differentially expressed genes (DEGs) were identified in the dam mutant, of which 145 genes were downregulated and 88 genes were upregulated compared to the wild type. According to data from miRNA sequence analysis, of 13 miRNAs differentially expressed in dam mutant, 9 miRNAs were downregulated and 4 miRNAs were upregulated. These data provide the first evidence that the dam gene is a global regulator of biofilm formation in Salmonella. In addition, phenotypic analyses revealed that bacterial swimming and swarming motility and cellulose production were highly inhibited in the dam mutant. It was determined that bacterial adhesion in Caco-2 and HEp-2 cell lines was significantly reduced in dam mutant. At the end of 90 min, the adhesion rate of wild type strain was 43.3% in Caco-2 cell line, while this rate was 14.9% in dam mutant. In the HEp-2 cell line, while 45.5% adherence was observed in the wild-type strain, this rate decreased to 15.3% in the dam mutant.
Collapse
Affiliation(s)
- Selma Keçeli Oğuz
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| | - Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey.
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
Salvatore MM, Maione A, La Pietra A, Carraturo F, Staropoli A, Vinale F, Andolfi A, Salvatore F, Guida M, Galdiero E. A model for microbial interactions and metabolomic alterations in Candida glabrata-Staphylococcus epidermidis dual-species biofilms. PLoS One 2022; 17:e0279069. [PMID: 36512606 PMCID: PMC9746963 DOI: 10.1371/journal.pone.0279069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The fungus Candida glabrata and the bacterium Staphylococcus epidermidis are important biofilm-forming microorganisms responsible of nosocomial infections in patients. In addition to causing single-species disease, these microorganisms are also involved in polymicrobial infections leading to an increased antimicrobial resistance. To expand knowledge about polymicrobial biofilms, in this study we investigate the formation of single- and dual-species biofilms of these two opportunistic pathogens employing several complementary approaches. First, biofilm biomass, biofilm metabolic activity and the microbial composition in single- and dual-species biofilms were assessed and compared. Then, the expression of three genes of C. glabrata and three genes of S. epidermidis positively related to the process of biofilm formation was evaluated. Although S. epidermidis is a stronger biofilm producer than C. glabrata, both biological and genetic data indicate that S. epidermidis growth is inhibited by C. glabrata which dominates the dual-species biofilms. To better understand the mechanisms of the interactions between the two microorganisms, a broad GC-MS metabolomic dataset of extracellular metabolites for planktonic, single- and dual-species biofilm cultures of C. glabrata and S. epidermidis was collected. As demonstrated by Partial Least Squares Discriminant Analysis (PLS-DA) of GC-MS metabolomic data, planktonic cultures, single- and dual-species biofilms can be sharply differentiated from each other by the nature and levels of an assortment of primary and secondary metabolites secreted in the culture medium. However, according to our data, 2-phenylethanol (secreted by C. glabrata) and the synergistically combined antifungal activity of 3-phenyllactic acid and of the cyclic dipeptide cyclo-(l-Pro-l-Trp) (secreted by S. epidermidis) play a major role in the race of the two microorganisms for predominance and survival.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
- * E-mail: (MG); (EG)
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy
- * E-mail: (MG); (EG)
| |
Collapse
|
7
|
Apis mellifera RidA, a novel member of the canonical YigF/YER057c/UK114 imine deiminase superfamily of enzymes pre-empting metabolic damage. Biochem Biophys Res Commun 2022; 616:70-75. [DOI: 10.1016/j.bbrc.2022.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
8
|
Multi-omics study identifies novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism by simulated diabetes on coronary endothelial cells. Sci Rep 2022; 12:12027. [PMID: 35835939 PMCID: PMC9283518 DOI: 10.1038/s41598-022-16300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery endothelial cells (CAEC) exert an important role in the development of cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects that a diabetic environment exerts on this cellular type are scarce. The present study characterized the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic environment (high glucose and high insulin). Changes at the metabolite and peptide level were assessed by Liquid Chromatography–Mass Spectrometry (LC–MS2) and chemoinformatics. The results were integrated with published LC–MS2-based quantitative proteomics on the same in vitro model. Our findings were consistent with reports on other endothelial cell types and identified novel signatures of DNA/RNA, amino acid, peptide, and lipid metabolism in cells under a diabetic environment. Manual data inspection revealed disturbances on tryptophan catabolism and biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. Fluorescence microscopy detected an increase in binucleation in cells under treatment that also occurred when human CAEC were used. This multi-omics study identified particular molecular perturbations in an induced diabetic environment that could help unravel the mechanisms underlying the development of cardiovascular disease in subjects with T2DM.
Collapse
|
9
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Jibrin MO, Liu Q, Guingab-Cagmat J, Jones JB, Garrett TJ, Zhang S. Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites 2021; 11:879. [PMID: 34940636 PMCID: PMC8706651 DOI: 10.3390/metabo11120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; β-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Department of Crop Protection, Ahmadu Bello University, Zaria 810103, Nigeria
| | - Qingchun Liu
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Shouan Zhang
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
11
|
Griffith CM, Walvekar AS, Linster CL. Approaches for completing metabolic networks through metabolite damage and repair discovery. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:None. [PMID: 34957344 PMCID: PMC8669784 DOI: 10.1016/j.coisb.2021.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolites are prone to damage, either via enzymatic side reactions, which collectively form the underground metabolism, or via spontaneous chemical reactions. The resulting non-canonical metabolites that can be toxic, are mended by dedicated "metabolite repair enzymes." Deficiencies in the latter can cause severe disease in humans, whereas inclusion of repair enzymes in metabolically engineered systems can improve the production yield of value-added chemicals. The metabolite damage and repair loops are typically not yet included in metabolic reconstructions and it is likely that many remain to be discovered. Here, we review strategies and associated challenges for unveiling non-canonical metabolites and metabolite repair enzymes, including systematic approaches based on high-resolution mass spectrometry, metabolome-wide side-activity prediction, as well as high-throughput substrate and phenotypic screens.
Collapse
Affiliation(s)
| | | | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Crippen CS, Glushka J, Vinogradov E, Szymanski CM. Trehalose-deficient Acinetobacter baumannii exhibits reduced virulence by losing capsular polysaccharide and altering membrane integrity. Glycobiology 2021; 31:1520-1530. [PMID: 34473830 DOI: 10.1093/glycob/cwab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
A. baumannii has become the leading cause of bacterial nosocomial infections in part due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high resolution magic angle spinning NMR and noting high levels of this disaccharide obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, ∆otsA and ∆otsB, we found that the trehalose-deficient ∆otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells while trehalose-6-phosphate producing ∆otsB behaved similar to the wildtype. The ∆otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.
Collapse
Affiliation(s)
- Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council, Ottawa, ON, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S. NMR: Unique Strengths That Enhance Modern Metabolomics Research. Anal Chem 2020; 93:478-499. [DOI: 10.1021/acs.analchem.0c04414] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Digiovanni S, Visentin C, Degani G, Barbiroli A, Chiara M, Regazzoni L, Di Pisa F, Borchert AJ, Downs DM, Ricagno S, Vanoni MA, Popolo L. Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Sci Rep 2020; 10:10135. [PMID: 32576850 PMCID: PMC7311433 DOI: 10.1038/s41598-020-66663-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive Intermediate Deaminase (Rid) protein superfamily includes eight families among which the RidA is conserved in all domains of life. RidA proteins accelerate the deamination of the reactive 2-aminoacrylate (2AA), an enamine produced by some pyridoxal phosphate (PLP)-dependent enzymes. 2AA accumulation inhibits target enzymes with a detrimental impact on fitness. As a consequence of whole genome duplication, teleost fish have two ridA paralogs, while other extant vertebrates contain a single-copy gene. We investigated the biochemical properties of the products of two paralogs, identified in Salmo salar. SsRidA-1 and SsRidA-2 complemented the growth defect of a Salmonella enterica ridA mutant, an in vivo model of 2AA stress. In vitro, both proteins hydrolyzed 2-imino acids (IA) to keto-acids and ammonia. SsRidA-1 was active on IA derived from nonpolar amino acids and poorly active or inactive on IA derived from other amino acids tested. In contrast, SsRidA-2 had a generally low catalytic efficiency, but showed a relatively higher activity with IA derived from L-Glu and aromatic amino acids. The crystal structures of SsRidA-1 and SsRidA-2 provided hints of the remarkably different conformational stability and substrate specificity. Overall, SsRidA-1 is similar to the mammalian orthologs whereas SsRidA-2 displays unique properties likely generated by functional specialization of a duplicated ancestral gene.
Collapse
Affiliation(s)
- Stefania Digiovanni
- Department of Biosciences, University of Milan, Milan, Italy.,Department of Chemical Biology I, University of Groningen, Groningen, The Netherlands
| | | | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Flavio Di Pisa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
15
|
Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyltransferase as the Primary Target of 2-Aminoacrylate in a ridA Mutant of Salmonella enterica. mSystems 2020; 5:5/2/e00843-19. [PMID: 32156800 PMCID: PMC7065518 DOI: 10.1128/msystems.00843-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships. The reactive intermediate deaminase RidA (EC 3.5.99.10) is conserved across all domains of life and deaminates reactive enamine species. When Salmonella entericaridA mutants are grown in minimal medium, 2-aminoacrylate (2AA) accumulates, damages several pyridoxal 5′-phosphate (PLP)-dependent enzymes, and elicits an observable growth defect. Genetic studies suggested that damage to serine hydroxymethyltransferase (GlyA), and the resultant depletion of 5,10-methelenetetrahydrofolate (5,10-mTHF), was responsible for the observed growth defect. However, the downstream metabolic consequence from GlyA damage by 2AA remains relatively unexplored. This study sought to use untargeted proton nuclear magnetic resonance (1H NMR) metabolomics to determine whether the metabolic state of an S. entericaridA mutant was accurately reflected by characterizing growth phenotypes. The data supported the conclusion that metabolic changes in a ridA mutant were due to the IlvA-dependent generation of 2AA, and that the majority of these changes were a consequence of damage to GlyA. While many of the metabolic differences for a ridA mutant could be explained, changes in some metabolites were not easily modeled, suggesting that additional levels of metabolic complexity remain to be unraveled. IMPORTANCE The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships.
Collapse
|