1
|
Cortese N, Procopio A, Merola A, Zaffino P, Cosentino C. Applications of genome-scale metabolic models to the study of human diseases: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108397. [PMID: 39232376 DOI: 10.1016/j.cmpb.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVES Genome-scale metabolic networks (GEMs) represent a valuable modeling and computational tool in the broad field of systems biology. Their ability to integrate constraints and high-throughput biological data enables the study of intricate metabolic aspects and processes of different cell types and conditions. The past decade has witnessed an increasing number and variety of applications of GEMs for the study of human diseases, along with a huge effort aimed at the reconstruction, integration and analysis of a high number of organisms. This paper presents a systematic review of the scientific literature, to pursue several important questions about the application of constraint-based modeling in the investigation of human diseases. Hopefully, this paper will provide a useful reference for researchers interested in the application of modeling and computational tools for the investigation of metabolic-related human diseases. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Elsevier Scopus®, National Library of Medicine PubMed® and Clarivate Web of Science™ databases were enquired, resulting in 566 scientific articles. After applying exclusion and eligibility criteria, a total of 169 papers were selected and individually examined. RESULTS The reviewed papers offer a thorough and up-to-date picture of the latest modeling and computational approaches, based on genome-scale metabolic models, that can be leveraged for the investigation of a large variety of human diseases. The numerous studies have been categorized according to the clinical research area involved in the examined disease. Furthermore, the paper discusses the most typical approaches employed to derive clinically-relevant information using the computational models. CONCLUSIONS The number of scientific papers, utilizing GEM-based approaches for the investigation of human diseases, suggests an increasing interest in these types of approaches; hopefully, the present review will represent a useful reference for scientists interested in applying computational modeling approaches to investigate the aetiopathology of human diseases; we also hope that this work will foster the development of novel applications and methods for the discovery of clinically-relevant insights on metabolic-related diseases.
Collapse
Affiliation(s)
- Nicola Cortese
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy
| | - Alessio Merola
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy
| | - Paolo Zaffino
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italy.
| |
Collapse
|
2
|
Wang FS, Zhang HX. Identification of Anticancer Enzymes and Biomarkers for Hepatocellular Carcinoma through Constraint-Based Modeling. Molecules 2024; 29:2594. [PMID: 38893469 PMCID: PMC11173608 DOI: 10.3390/molecules29112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) results in the abnormal regulation of cellular metabolic pathways. Constraint-based modeling approaches can be utilized to dissect metabolic reprogramming, enabling the identification of biomarkers and anticancer targets for diagnosis and treatment. In this study, two genome-scale metabolic models (GSMMs) were reconstructed by employing RNA sequencing expression patterns of hepatocellular carcinoma (HCC) and their healthy counterparts. An anticancer target discovery (ACTD) framework was integrated with the two models to identify HCC targets for anticancer treatment. The ACTD framework encompassed four fuzzy objectives to assess both the suppression of cancer cell growth and the minimization of side effects during treatment. The composition of a nutrient may significantly affect target identification. Within the ACTD framework, ten distinct nutrient media were utilized to assess nutrient uptake for identifying potential anticancer enzymes. The findings revealed the successful identification of target enzymes within the cholesterol biosynthetic pathway using a cholesterol-free cell culture medium. Conversely, target enzymes in the cholesterol biosynthetic pathway were not identified when the nutrient uptake included a cholesterol component. Moreover, the enzymes PGS1 and CRL1 were detected in all ten nutrient media. Additionally, the ACTD framework comprises dual-group representations of target combinations, pairing a single-target enzyme with an additional nutrient uptake reaction. Additionally, the enzymes PGS1 and CRL1 were identified across the ten-nutrient media. Furthermore, the ACTD framework encompasses two-group representations of target combinations involving the pairing of a single-target enzyme with an additional nutrient uptake reaction. Computational analysis unveiled that cell viability for all dual-target combinations exceeded that of their respective single-target enzymes. Consequently, integrating a target enzyme while adjusting an additional exchange reaction could efficiently mitigate cell proliferation rates and ATP production in the treated cancer cells. Nevertheless, most dual-target combinations led to lower side effects in contrast to their single-target counterparts. Additionally, differential expression of metabolites between cancer cells and their healthy counterparts were assessed via parsimonious flux variability analysis employing the GSMMs to pinpoint potential biomarkers. The variabilities of the fluxes and metabolite flow rates in cancer and healthy cells were classified into seven categories. Accordingly, two secretions and thirteen uptakes (including eight essential amino acids and two conditionally essential amino acids) were identified as potential biomarkers. The findings of this study indicated that cancer cells exhibit a higher uptake of amino acids compared with their healthy counterparts.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan;
| | | |
Collapse
|
3
|
Chen K, Wang F. Cell-specific genome-scale metabolic modeling of SARS-CoV-2-infected lung to identify antiviral enzymes. FEBS Open Bio 2023; 13:2172-2186. [PMID: 37734920 PMCID: PMC10699103 DOI: 10.1002/2211-5463.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Computational systems biology plays a key role in the discovery of suitable antiviral targets. We designed a cell-specific, constraint-based modeling technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs. We used the gene sequence of the alpha variant of SARS-CoV-2 to build a viral biomass reaction (VBR). We also used the mass proportion of lipids between the viral biomass and its host cell to estimate the stoichiometric coefficients of viral lipids in the reaction. We then integrated the VBR, the gene expression of the alpha variant of SARS-CoV-2, and the generic human metabolic network Recon3D to reconstruct a cell-specific genome-scale metabolic model. An antiviral target discovery (AVTD) platform was introduced using this model to identify therapeutic drug targets for combating COVID-19. The AVTD platform not only identified antiviral genes for eliminating viral replication but also predicted side effects of treatments. Our computational results revealed that knocking out dihydroorotate dehydrogenase (DHODH) might reduce the synthesis rate of cytidine-5'-triphosphate and uridine-5'-triphosphate, which terminate the viral building blocks of DNA and RNA for SARS-CoV-2 replication. Our results also indicated that DHODH is a promising antiviral target that causes minor side effects, which is consistent with the results of recent reports. Moreover, we discovered that the genes that participate in the de novo biosynthesis of glycerophospholipids and ceramides become unidentifiable if the VBR does not involve the stoichiometry of lipids.
Collapse
Affiliation(s)
- Ke‐Lin Chen
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayiTaiwan
| | - Feng‐Sheng Wang
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayiTaiwan
| |
Collapse
|
4
|
Cheng CT, Lai JM, Chang PMH, Hong YR, Huang CYF, Wang FS. Identifying essential genes in genome-scale metabolic models of consensus molecular subtypes of colorectal cancer. PLoS One 2023; 18:e0286032. [PMID: 37205704 DOI: 10.1371/journal.pone.0286032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Identifying essential targets in the genome-scale metabolic networks of cancer cells is a time-consuming process. The present study proposed a fuzzy hierarchical optimization framework for identifying essential genes, metabolites and reactions. On the basis of four objectives, the present study developed a framework for identifying essential targets that lead to cancer cell death and evaluating metabolic flux perturbations in normal cells that have been caused by cancer treatment. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. We applied nested hybrid differential evolution to solve the trilevel MDM problem to identify essential targets in genome-scale metabolic models for five consensus molecular subtypes (CMSs) of colorectal cancer. We used various media to identify essential targets for each CMS and discovered that most targets affected all five CMSs and that some genes were CMS-specific. We obtained experimental data on the lethality of cancer cell lines from the DepMap database to validate the identified essential genes. The results reveal that most of the identified essential genes were compatible with the colorectal cancer cell lines obtained from DepMap and that these genes, with the exception of EBP, LSS, and SLC7A6, could generate a high level of cell death when knocked out. The identified essential genes were mostly involved in cholesterol biosynthesis, nucleotide metabolisms, and the glycerophospholipid biosynthetic pathway. The genes involved in the cholesterol biosynthetic pathway were also revealed to be determinable, if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in the cholesterol biosynthetic pathway became non-essential if such a reaction was induced. Furthermore, the essential gene CRLS1 was revealed as a medium-independent target for all CMSs.
Collapse
Affiliation(s)
- Chao-Ting Cheng
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Jin-Mei Lai
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
5
|
Wang FS, Chen PR, Chen TY, Zhang HX. Fuzzy optimization for identifying anti-cancer targets with few side effects in constraint-based models of head and neck cancer. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220633. [PMID: 36303939 PMCID: PMC9597175 DOI: 10.1098/rsos.220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Computer-aided methods can be used to screen potential candidate targets and to reduce the time and cost of drug development. In most of these methods, synthetic lethality is used as a therapeutic criterion to identify drug targets. However, these methods do not consider the side effects during the identification stage. This study developed a fuzzy multi-objective optimization for identifying anti-cancer targets that not only evaluated cancer cell mortality, but also minimized side effects due to treatment. We identified potential anti-cancer enzymes and antimetabolites for the treatment of head and neck cancer (HNC). The identified one- and two-target enzymes were primarily involved in six major pathways, namely, purine and pyrimidine metabolism and the pentose phosphate pathway. Most of the identified targets can be regulated by approved drugs; thus, these drugs are potential candidates for drug repurposing as a treatment for HNC. Furthermore, we identified antimetabolites involved in pathways similar to those identified using a gene-centric approach. Moreover, HMGCR knockdown could not block the growth of HNC cells. However, the two-target combinations of (UMPS, HMGCR) and (CAD, HMGCR) could achieve cell mortality and improve metabolic deviation grades over 22% without reducing the cell viability grade.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Pei-Rong Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Ting-Yu Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Hao-Xiang Zhang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
6
|
Ng RH, Lee JW, Baloni P, Diener C, Heath JR, Su Y. Constraint-Based Reconstruction and Analyses of Metabolic Models: Open-Source Python Tools and Applications to Cancer. Front Oncol 2022; 12:914594. [PMID: 35875150 PMCID: PMC9303011 DOI: 10.3389/fonc.2022.914594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The influence of metabolism on signaling, epigenetic markers, and transcription is highly complex yet important for understanding cancer physiology. Despite the development of high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these indirect measurements. Fortunately, genome-scale metabolic models and constraint-based modeling provide a systems biology framework to investigate the metabolic states and define the genotype-phenotype associations by integrations of multi-omics data. Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and simulate metabolic networks using mathematical representations of biochemical reactions, gene-protein reaction associations, and physiological and biochemical constraints. These methods have led to advancements in metabolic reconstruction, network analysis, perturbation studies as well as prediction of metabolic state. Most computational tools for performing these analyses are written for MATLAB, a proprietary software. In order to increase accessibility and handle more complex datasets and models, community efforts have started to develop similar open-source tools in Python. To date there is a comprehensive set of tools in Python to perform various flux analyses and visualizations; however, there are still missing algorithms in some key areas. This review summarizes the availability of Python software for several components of COBRA methods and their applications in cancer metabolism. These tools are evolving rapidly and should offer a readily accessible, versatile way to model the intricacies of cancer metabolism for identifying cancer-specific metabolic features that constitute potential drug targets.
Collapse
Affiliation(s)
- Rachel H. Ng
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jihoon W. Lee
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | - James R. Heath
- Institute for Systems Biology, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yapeng Su
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
7
|
Wang FS, Chen KL, Chu SW. Human/SARS-CoV-2 genome-scale metabolic modeling to discover potential antiviral targets for COVID-19. J Taiwan Inst Chem Eng 2022; 133:104273. [PMID: 35186172 PMCID: PMC8843340 DOI: 10.1016/j.jtice.2022.104273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has caused a substantial increase in mortality and economic and social disruption. The absence of US Food and Drug Administration-approved drugs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for new therapeutic drugs to combat COVID-19. METHODS The present study proposed a fuzzy hierarchical optimization framework for identifying potential antiviral targets for COVID-19. The objectives in the decision-making problem were not only to evaluate the elimination of the virus growth, but also to minimize side effects causing treatment. The identified candidate targets could promote processes of drug discovery and development. SIGNIFICANT FINDINGS Our gene-centric method revealed that dihydroorotate dehydrogenase (DHODH) inhibition could reduce viral biomass growth and metabolic deviation by 99.4% and 65.6%, respectively, and increase cell viability by 70.4%. We also identified two-target combinations that could completely block viral biomass growth and more effectively prevent metabolic deviation. We also discovered that the inhibition of two antiviral metabolites, cytidine triphosphate (CTP) and uridine-5'-triphosphate (UTP), exhibits effects similar to those of molnupiravir, which is undergoing phase III clinical trials. Our predictions also indicate that CTP and UTP inhibition blocks viral RNA replication through a similar mechanism to that of molnupiravir.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Ke-Lin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Sz-Wei Chu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| |
Collapse
|
8
|
Wang FS, Wang TY, Wu WH. Fuzzy multiobjective hierarchical optimization with application to identify antienzymes of colon cancer cells. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Wang T, Lyu CY, Jiang YH, Dong XY, Wang Y, Li ZH, Wang JX, Xu RR. A drug-biomarker interaction model to predict the key targets of Scutellaria barbata D. Don in adverse-risk acute myeloid leukaemia. Mol Divers 2021; 25:2351-2365. [PMID: 32676746 DOI: 10.1007/s11030-020-10124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
A poor prognosis, relapse and resistance are burning issues during adverse-risk acute myeloid leukaemia (AML) treatment. As a natural medicine, Scutellaria barbata D. Don (SBD) has shown impressive antitumour activity in various cancers. Thus, SBD may become a potential drug in adverse-risk AML treatment. This study aimed to screen the key targets of SBD in adverse-risk AML using the drug-biomarker interaction model through bioinformatics and network pharmacology methods. First, the adverse-risk AML-related critical biomarkers and targets of SBD active ingredient were obtained from The Cancer Genome Atlas database and several pharmacophore matching databases. Next, the protein-protein interaction network was constructed, and topological analysis and pathway enrichment were used to screen key targets and main pathways of intervention of SBD in adverse-risk AML. Finally, molecular docking was implemented for key target verification. The results suggest that luteolin and quercetin are the main active components of SBD against adverse-risk AML, and affected drug resistance, apoptosis, immune regulation and angiogenesis through the core targets AKT1, MAPK1, IL6, EGFR, SRC, VEGFA and TP53. We hope the proposed drug-biomarker interaction model provides an effective strategy for the research and development of antitumour drugs.
Collapse
Affiliation(s)
- Teng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Chun-Yi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yue-Hua Jiang
- Central Laboratory of Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Xue-Yan Dong
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Zong-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Jin-Xin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China
| | - Rui-Rong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong Province, People's Republic of China.
| |
Collapse
|
10
|
Cheng CT, Wang TY, Chen PR, Wu WH, Lai JM, Chang PMH, Hong YR, Huang CYF, Wang FS. Computer-Aided Design for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer. BIOLOGY 2021; 10:biology10111115. [PMID: 34827109 PMCID: PMC8614794 DOI: 10.3390/biology10111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Discovery of anticancer targets with minimal side effects is a major challenge in drug discovery and development. This study developed a fuzzy optimization framework for identifying anticancer targets. The framework was applied to identify not only gene regulator targets but also metabolite- and reaction-centric targets. The computational results show that the combination of a carbon metabolism target and any one-target gene that participates in the sphingolipid, glycerophospholipid, nucleotide, cholesterol biosynthesis, or pentose phosphate pathways is more effective for treatment than one-target inhibition is, and a two-target combination of 5-FU and folate supplement can improve cell viability, reduce metabolic deviation, and reduce side effects of normal cells. Abstract The efficient discovery of anticancer targets with minimal side effects is a major challenge in drug discovery and development. Early prediction of side effects is key for reducing development costs, increasing drug efficacy, and increasing drug safety. This study developed a fuzzy optimization framework for Identifying AntiCancer Targets (IACT) using constraint-based models. Four objectives were established to evaluate the mortality of treated cancer cells and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Fuzzy set theory was applied to evaluate potential side effects and investigate the magnitude of metabolic deviations in perturbed cells compared with their normal counterparts. The framework was applied to identify not only gene regulator targets but also metabolite- and reaction-centric targets. A nested hybrid differential evolution algorithm with a hierarchical fitness function was applied to solve multilevel IACT problems. The results show that the combination of a carbon metabolism target and any one-target gene that participates in the sphingolipid, glycerophospholipid, nucleotide, cholesterol biosynthesis, or pentose phosphate pathways is more effective for treatment than one-target inhibition is. A clinical antimetabolite drug 5-fluorouracil (5-FU) has been used to inhibit synthesis of deoxythymidine-5′-triphosphate for treatment of colorectal cancer. The computational results reveal that a two-target combination of 5-FU and a folate supplement can improve cell viability, reduce metabolic deviation, and reduce side effects of normal cells.
Collapse
Affiliation(s)
- Chao-Ting Cheng
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (C.-T.C.); (T.-Y.W.); (P.-R.C.); (W.-H.W.)
| | - Tsun-Yu Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (C.-T.C.); (T.-Y.W.); (P.-R.C.); (W.-H.W.)
| | - Pei-Rong Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (C.-T.C.); (T.-Y.W.); (P.-R.C.); (W.-H.W.)
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (C.-T.C.); (T.-Y.W.); (P.-R.C.); (W.-H.W.)
| | - Jin-Mei Lai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (C.-T.C.); (T.-Y.W.); (P.-R.C.); (W.-H.W.)
- Correspondence: ; Tel.: +886-5-2720411 (ext. 33404)
| |
Collapse
|
11
|
Frades I, Foguet C, Cascante M, Araúzo-Bravo MJ. Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers (Basel) 2021; 13:4609. [PMID: 34572839 PMCID: PMC8470216 DOI: 10.3390/cancers13184609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
The tumor's physiology emerges from the dynamic interplay of numerous cell types, such as cancer cells, immune cells and stromal cells, within the tumor microenvironment. Immune and cancer cells compete for nutrients within the tumor microenvironment, leading to a metabolic battle between these cell populations. Tumor cells can reprogram their metabolism to meet the high demand of building blocks and ATP for proliferation, and to gain an advantage over the action of immune cells. The study of the metabolic reprogramming mechanisms underlying cancer requires the quantification of metabolic fluxes which can be estimated at the genome-scale with constraint-based or kinetic modeling. Constraint-based models use a set of linear constraints to simulate steady-state metabolic fluxes, whereas kinetic models can simulate both the transient behavior and steady-state values of cellular fluxes and concentrations. The integration of cell- or tissue-specific data enables the construction of context-specific models that reflect cell-type- or tissue-specific metabolic properties. While the available modeling frameworks enable limited modeling of the metabolic crosstalk between tumor and immune cells in the tumor stroma, future developments will likely involve new hybrid kinetic/stoichiometric formulations.
Collapse
Affiliation(s)
- Itziar Frades
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
- Max Planck Institute of Molecular Biomedicine, 48167 Münster, Germany
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), 28015 Madrid, Spain
- Translational Bioinformatics Network (TransBioNet), 8001 Barcelona, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| |
Collapse
|
12
|
Heinken A, Basile A, Hertel J, Thinnes C, Thiele I. Genome-Scale Metabolic Modeling of the Human Microbiome in the Era of Personalized Medicine. Annu Rev Microbiol 2021; 75:199-222. [PMID: 34314593 DOI: 10.1146/annurev-micro-060221-012134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome plays an important role in human health and disease. Meta-omics analyses provide indispensable data for linking changes in microbiome composition and function to disease etiology. Yet, the lack of a mechanistic understanding of, e.g., microbiome-metabolome links hampers the translation of these findings into effective, novel therapeutics. Here, we propose metabolic modeling of microbial communities through constraint-based reconstruction and analysis (COBRA) as a complementary approach to meta-omics analyses. First, we highlight the importance of microbial metabolism in cardiometabolic diseases, inflammatory bowel disease, colorectal cancer, Alzheimer disease, and Parkinson disease. Next, we demonstrate that microbial community modeling can stratify patients and controls, mechanistically link microbes with fecal metabolites altered in disease, and identify host pathways affected by the microbiome. Finally, we outline our vision for COBRA modeling combined with meta-omics analyses and multivariate statistical analyses to inform and guide clinical trials, yield testable hypotheses, and ultimately propose novel dietary and therapeutic interventions. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Almut Heinken
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Arianna Basile
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Johannes Hertel
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Department of Psychiatry and Psychotherapy, University of Greifswald, 17489 Greifswald, Germany
| | - Cyrille Thinnes
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Division of Microbiology, National University of Ireland, Galway, H91 TK33, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
13
|
Wang YT, Lin MR, Chen WC, Wu WH, Wang FS. Optimization of a modeling platform to predict oncogenes from genome-scale metabolic networks of non-small-cell lung cancers. FEBS Open Bio 2021. [PMID: 34137202 PMCID: PMC8329960 DOI: 10.1002/2211-5463.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer cell dysregulations result in the abnormal regulation of cellular metabolic pathways. By simulating this metabolic reprogramming using constraint-based modeling approaches, oncogenes can be predicted, and this knowledge can be used in prognosis and treatment. We introduced a trilevel optimization problem describing metabolic reprogramming for inferring oncogenes. First, this study used RNA-Seq expression data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples and their healthy counterparts to reconstruct tissue-specific genome-scale metabolic models and subsequently build the flux distribution pattern that provided a measure for the oncogene inference optimization problem for determining tumorigenesis. The platform detected 45 genes for LUAD and 84 genes for LUSC that lead to tumorigenesis. A high level of differentially expressed genes was not an essential factor for determining tumorigenesis. The platform indicated that pyruvate kinase (PKM), a well-known oncogene with a low level of differential gene expression in LUAD and LUSC, had the highest fitness among the predicted oncogenes based on computation. By contrast, pyruvate kinase L/R (PKLR), an isozyme of PKM, had a high level of differential gene expression in both cancers. Phosphatidylserine synthase 1 (PTDSS1), an oncogene in LUAD, was inferred to have a low level of differential gene expression, and overexpression could significantly reduce survival probability. According to the factor analysis, PTDSS1 characteristics were close to those of the template, but they were unobvious in LUSC. Angiotensin-converting enzyme 2 (ACE2) has recently garnered widespread interest as the SARS-CoV-2 virus receptor. Moreover, we determined that ACE2 is an oncogene of LUSC but not of LUAD. The platform developed in this study can identify oncogenes with low levels of differential expression and be used to identify potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- You-Tyun Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Min-Ru Lin
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Chen Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wu-Hsiung Wu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
14
|
Chowdhury S, Fong SS. Leveraging genome-scale metabolic models for human health applications. Curr Opin Biotechnol 2020; 66:267-276. [PMID: 33120253 DOI: 10.1016/j.copbio.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Genome-scale metabolic modeling is a scalable and extensible computational method for analyzing and predicting biological function. With the ongoing improvements in computational methods and experimental capabilities, genome-scale metabolic models (GEMs) are demonstrating utility in addressing human health applications. The initial areas of highest impact are likely to be health applications where disease states involve metabolic changes. In this review, we focus on recent application of GEMs to studying cancer and the human microbiome by describing the enabling methodologies and outcomes of these studies. We conclude with proposing some areas of research that are likely to arise as a result of recent methodological advances.
Collapse
Affiliation(s)
- Shomeek Chowdhury
- Integrative Life Sciences, Virginia Commonwealth University, 1000 West Main Street, Richmond, 23284, VA, USA
| | - Stephen S Fong
- Integrative Life Sciences, Virginia Commonwealth University, 1000 West Main Street, Richmond, 23284, VA, USA; Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, 23284, VA, USA.
| |
Collapse
|
15
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|