1
|
Mongalo NI, Raletsena MV. Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Peltophorum africanum Sond (Fabaceae): Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:239. [PMID: 39861592 PMCID: PMC11768249 DOI: 10.3390/plants14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Peltophorum africanum Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on P. africanum, using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others. Further data was obtained from several scholarly theses, dissertations, and books on general plant sciences, ethnomedicine, and other pertinent ethnobotanical topics. The plant species possess very important pharmacological activities in vitro, which includes antimicrobial, anti-HIV, antioxidant, anticancer, antidiabetic, and other activities. Phytochemically, the plant possesses various classes of compounds, dominated by flavonols, which may well explain its wider range of pharmacological activities. Although the plant is promising anti-HIV activity, the mode of action and safety profiles of the plant also need to be explored as its extracts exerted some degree of mutagenicity. It is also important to further explore its ethnoveterinary use against a plethora of nematodes that infects both wild and domestic animals. Given its potent pharmacological activity, the further in vivo studies need to be explored to ascertain the comprehensive toxicology of the plant species, thereby developing possible medications. The plant species may further be elevated to a potent pharmaceutical product against plethora of infections.
Collapse
Affiliation(s)
- Nkoana I. Mongalo
- College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa;
| | | |
Collapse
|
2
|
Ntsoane T, Nemukondeni N, Nemadodzi LE. A Systematic Review: Assessment of the Metabolomic Profile and Anti-Nutritional Factors of Cannabis sativa as a Feed Additive for Ruminants. Metabolites 2024; 14:712. [PMID: 39728493 DOI: 10.3390/metabo14120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Cannabis sativa is a high-value crop that can be cultivated for ruminant's feed and medicinal purposes. The demand for Cannabis and Cannabis products has increased since the beginning of 21st century. Objectives: The increase in the production cost of high-protein feeds such as lucerne has led to an urgent need to investigate alternative high-protein sources. Methods: Cannabis has been identified as an alternative to lucerne due to its high protein content. Results: However, the cultivation and uses of Cannabis and its by-products in South Africa is limited due to the strict legislation. The metabolites and nutritional value of Cannabis are influenced by growing conditions and soil type. Furthermore, the available literature has shown that Cannabis contains anti-nutritional factors that may affect feed intake or bioavailability and digestibility. Conclusions: Therefore, it is crucial to employ a processing method that can reduce anti-nutritional factors to promote the feed intake and growth rate of sheep. Fermentation, as a processing method, can reduce anti-nutritional factors found in Cannabis, which will make it a palatable alternative feed supplement for ruminants such as Dorper sheep. Overall, this review paper aimed to examine the available literature on the use of Cannabis as an alternative high-protein feed supplement for Dorper sheep in South Africa.
Collapse
Affiliation(s)
- Tumisho Ntsoane
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| | - Ndivho Nemukondeni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| |
Collapse
|
3
|
Song Y, Yao S, Li X, Wang T, Jiang X, Bolan N, Warren CR, Northen TR, Chang SX. Soil metabolomics: Deciphering underground metabolic webs in terrestrial ecosystems. ECO-ENVIRONMENT & HEALTH 2024; 3:227-237. [PMID: 38680731 PMCID: PMC11047296 DOI: 10.1016/j.eehl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil. Soil metabolites, including fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds, often contain essential nutrients such as nitrogen, phosphorus, and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms. This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling. We describe important applications of metabolomics in studying soil carbon cycling and sequestration, and the response of soil organic pools to changing environmental conditions. This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome, as well as responses of soil metabolome to plant and environmental stresses such as soil contamination. We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Yao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Li
- School of Environment and Ecology, Jiangnan University, Wuxi 225127, China
| | - Tao Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Nedland, WA-6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA-6009, Australia
- Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Charles R. Warren
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Building A08, NSW 2006, Australia
| | - Trent R. Northen
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
4
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
5
|
Nemadodzi LE, Managa GM. 1H NMR-Based Metabolomics Profile of Green and Red Amaranthus Grown in Open Field versus Greenhouse Cultivation System. Metabolites 2023; 14:21. [PMID: 38248824 PMCID: PMC10819972 DOI: 10.3390/metabo14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Traditionally, indigenous African leafy vegetables such as Amaranthus, blackjack, jute mallow, cleome monophyla, and spider plants have been conventionally and organically grown as weeds in open fields. However, the lack of land space due to the increase in population has resulted in unconventional, modern, and advanced agricultural farming. The introduction of a greenhouse has recently become the second most popular growing system alongside shade net and glasshouse to increase productivity and meet consumers' demand. Several studies on Amaranthus species have solely focused on physiological parameters and nutritional composition, leaving a huge gap on their metabolomic profile of the leaves which is crucial to comprehend when growing Amaranthus species in different cropping systems. Therefore, the study aimed to determine the influence of different cropping systems on the release of metabolites of two commonly consumed Amaranthus species in South Africa. H1 -Nuclear Magnetic Resonance (NMR) tool was used to profile the untargeted metabolites of green (Amaranthus graecizans L.) and red (Amaranthus cruentus L.) species. A total of 12 metabolites-trehalose, betaine, glutamine, choline, sucrose, caprate, adenosine, asparagine, carnitine, caffeine, aspartate, and alanine-were detected in green amaranth grown in open fields. Except for caffeine, aspartate, and caprate, which were found in the green amaranth grown in open fields, all the other metabolites were detected in the greenhouse grown once. Interestingly, allantoin, which serves as an allelochemical, was the sole distinct metabolite detected in greenhouse cultivated green amaranth. On the contrary, seven similar metabolites were quantified in red amaranth grown in both open fields and greenhouses, apart from caffeine, which was only detected in greenhouse-cultivated red amaranth.
Collapse
Affiliation(s)
- Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg 1709, South Africa
| | | |
Collapse
|
6
|
Nemadodzi LE, Prinsloo G. A New Proposed Symbiotic Plant-Herbivore Relationship between Burkea africana Trees, Cirina forda Caterpillars and Their Associated Fungi Pleurostomophora richardsiae and Aspergillus nomius. Microorganisms 2023; 11:1864. [PMID: 37513036 PMCID: PMC10383216 DOI: 10.3390/microorganisms11071864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Burkea africana is a tree found in savannah and woodland in southern Africa, as well as northwards into tropical African regions as far as Nigeria and Ethiopia. It is used as fuel wood, medicinally to treat various conditions, such as toothache, headache, migraine, pain, inflammation, and sexually transmitted diseases, such as gonorrhoea, but also an ornamental tree. The current study investigated the possible symbiotic relationship between B. africana trees and the C. forda caterpillars and the mutual role played in ensuring the survival of B. africana trees/seedlings in harsh natural conditions and low-nutrient soils. Deoxyribonucleic acid isolation and sequencing results revealed that the fungal species Pleurostomophora richardsiae was highly predominant in the leaves of B. africana trees and present in the caterpillars. The second most prominent fungal species in the caterpillars was Aspergillus nomius. The latter is known to be related to a Penicillium sp. which was found to be highly prevalent in the soil where B. africana trees grow and is suggested to play a role in enhancing the effective growth of B. africana trees in their natural habitat. To support this, a phylogenetic analysis was conducted, and a tree was constructed, which shows a high percentage similarity between Aspergillus and Penicillium sp. The findings of the study revealed that B. africana trees not only serve as a source of feed for the C. forda caterpillar but benefit from C. forda caterpillars which, after dropping onto the soil, is proposed to inoculate the soil surrounding the trees with the fungus A. nomius which suggests a symbiotic and/or synergistic relationship between B. africana trees and C. forda caterpillars.
Collapse
Affiliation(s)
- Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
- ABBERU, Science Campus, University of South Africa, Johannesburg 1710, South Africa
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Johannesburg 1710, South Africa
- ABBERU, Science Campus, University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
7
|
Nemadodzi LE, Managa GM, Prinsloo G. The Use of Gonimbrasia belina (Westwood, 1849) and Cirina forda (Westwood, 1849) Caterpillars (Lepidoptera: Sarturniidae) as Food Sources and Income Generators in Africa. Foods 2023; 12:2184. [PMID: 37297431 PMCID: PMC10252327 DOI: 10.3390/foods12112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Gonimbrasia belina (mopane worm) and Cirina forda caterpillars (Lepidoptera: Saturniidae) are mostly found in shrubs and trees, from where they are collected as larvae and are widely consumed across southern Africa by rural and increasingly urban populations. These caterpillars are among the most prominent, traded, and economically beneficial edible insects found in Western African countries, but also in South Africa, Zimbabwe, Botswana, and the Democratic Republic of the Congo. Over the years, these caterpillars have evolved from being part of the diet in various communities to playing a vital role in income generation. In addition, consumption of G. belina and C. forda caterpillars as potential food sources has gained momentum due to their potential for contributing to livelihoods and mitigating food security challenges across Africa while providing significant benefits to developing countries on a socio-economic and ecological level. Edible caterpillars serve as a good source of rich nutrients such as proteins, fatty acids, and micronutrients and can be used in formulating nutrient-dense complementary foods. However, limited information is available, specifically on different trees that serve as hosts to these caterpillars, as they depend on the leaves as their only source of food. In addition, the review aims to critique and document knowledge on the nutritional benefits, acceptance of the use of these caterpillars as food security, commercial value, and level of acceptance towards the utilization of caterpillars as food sources.
Collapse
Affiliation(s)
- Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | | | | |
Collapse
|
8
|
Mishra AK, Sudalaimuthuasari N, Hazzouri KM, Saeed EE, Shah I, Amiri KMA. Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques. Cells 2022; 11:3254. [PMID: 36291121 PMCID: PMC9600287 DOI: 10.3390/cells11203254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/21/2023] Open
Abstract
This review highlights the pivotal role of root exudates in the rhizosphere, especially the interactions between plants and microbes and between plants and plants. Root exudates determine soil nutrient mobilization, plant nutritional status, and the communication of plant roots with microbes. Root exudates contain diverse specialized signaling metabolites (primary and secondary). The spatial behavior of these metabolites around the root zone strongly influences rhizosphere microorganisms through an intimate compatible interaction, thereby regulating complex biological and ecological mechanisms. In this context, we reviewed the current understanding of the biological phenomenon of allelopathy, which is mediated by phytotoxic compounds (called allelochemicals) released by plants into the soil that affect the growth, survival, development, ecological infestation, and intensification of other plant species and microbes in natural communities or agricultural systems. Advances in next-generation sequencing (NGS), such as metagenomics and metatranscriptomics, have opened the possibility of better understanding the effects of secreted metabolites on the composition and activity of root-associated microbial communities. Nevertheless, understanding the role of secretory metabolites in microbiome manipulation can assist in designing next-generation microbial inoculants for targeted disease mitigation and improved plant growth using the synthetic microbial communities (SynComs) tool. Besides a discussion on different approaches, we highlighted the advantages of conjugation of metabolomic approaches with genetic design (metabolite-based genome-wide association studies) in dissecting metabolome diversity and understanding the genetic components of metabolite accumulation. Recent advances in the field of metabolomics have expedited comprehensive and rapid profiling and discovery of novel bioactive compounds in root exudates. In this context, we discussed the expanding array of metabolomics platforms for metabolome profiling and their integration with multivariate data analysis, which is crucial to explore the biosynthesis pathway, as well as the regulation of associated pathways at the gene, transcript, and protein levels, and finally their role in determining and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. Hazzouri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry (Biochemistry), College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
10
|
Elsaba YM, Boroujerdi A, Abdelsalam A. Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum. MYCOBIOLOGY 2022; 50:110-120. [PMID: 35571857 PMCID: PMC9068000 DOI: 10.1080/12298093.2022.2059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.
Collapse
Affiliation(s)
- Yasmin M. Elsaba
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|