1
|
Chen L, Li HL, Zhou HJ, Zhang GZ, Zhang Y, Wang YM, Wang MY, Yang H, Gao W. Feature-Based Molecular Network-Assisted Cannabinoid and Flavonoid Profiling of Cannabis sativa Leaves and Their Antioxidant Properties. Antioxidants (Basel) 2024; 13:749. [PMID: 38929189 PMCID: PMC11200612 DOI: 10.3390/antiox13060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabis sativa (C. sativa) leaves are rich in cannabinoids and flavonoids, which play important antioxidant roles. Since the environmental factors may influence the accumulation of antioxidants in herbal medicines, which affects their activity, this study aimed to investigate the correlation between the chemical composition of C. sativa leaves and their geographical origin and antioxidant activity. Firstly, a high-resolution mass spectrometry method assisted by semi-quantitative feature-based molecular networking (SQFBMN) was established for the characterization and quantitative analysis of C. sativa leaves from various regions. Subsequently, antioxidant activity analysis was conducted on 73 batches of C. sativa leaves, and a partial least squares regression (PLS) model was employed to assess the correlation between the content of cannabinoids and flavonoids in the leaves and their antioxidant activity. A total of 16 cannabinoids and 57 flavonoids were annotated from C. sativa, showing a significant regular geographical distribution. The content of flavonoid-C glycosides in Sichuan leaves is relatively high, and their antioxidant activity is also correspondingly high. However, the leaves in Shaanxi and Xinjiang were primarily composed of flavonoid-O glycosides, and exhibited slightly lower antioxidant activity. A significant positive correlation (p < 0.001) was found between the total flavonoids and cannabinoids and the antioxidant activity of the leaves, and two flavonoids and one cannabinoid were identified as significant contributors.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
| | - Hong-Ling Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Hong-Juan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Guan-Zhong Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Ying Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China;
| | - You-Mei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China;
| | - Meng-Yuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| |
Collapse
|
2
|
Mailänder LK, Nosrati Gazafroudi K, Greiß M, Lorenz P, Nicolay S, Gründemann C, Stintzing FC, Daniels R, Kammerer DR. Impact of Fermentation on the Phytochemical Profile and Bioactivity Characteristics of Aqueous Matricaria recutita L. Root Extracts. Chem Biodivers 2024; 21:e202400159. [PMID: 38563619 DOI: 10.1002/cbdv.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
While the flowers of Matricaria recutita L., German chamomile, are widely used for medicinal and cosmetic purposes, little is known about its roots, which are used in complementary medicine for the preparation of aqueous fermented extracts for the treatment of cramps and anxiety. To broaden the understanding of the active principles involved, a model fermentation approach was developed and fermentates were compared to commercially manufactured tinctures. Coumarins and hydroxycinnamates were among the major secondary metabolites characterized using HPLC-MSn. After six months of fermentation and storage, low-molecular organic acids were detected by GC-MS. Fermentation contributed to the stabilization of antioxidant and radical scavenging activities, which were in a range of about 8-10 mg gallic acid equivalents/g dry weight and 20-24 mg trolox equivalents/g dry weight, determined by Folin-Ciocalteu and DPPH assays, respectively. In addition, antibacterial activities of the extracts against Gram-positive and -negative bacteria increased during the first week of fermentation. Fermentates were neither cytotoxic nor pro- or anti-inflammatory. Thus, fermentation of chamomile roots is a suitable method for the safe production of biofunctional aqueous chamomile root extracts that remain stable without the addition of synthetic preservatives.
Collapse
Affiliation(s)
- Lilo K Mailänder
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Marit Greiß
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Sven Nicolay
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Florian C Stintzing
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Dietmar R Kammerer
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
3
|
da Silva IF, Bragante WR, Junior RCM, Laurindo LF, Guiguer EL, Araújo AC, Fiorini AMR, Nicolau CCT, Oshiiwa M, de Lima EP, Barbalho SM, Silva LR. Effects of Smallanthus sonchifolius Flour on Metabolic Parameters: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:658. [PMID: 38794228 PMCID: PMC11125133 DOI: 10.3390/ph17050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Smallanthus sonchifolius, popularly known as yacon, is a member of the Asteraceae family. Due to its medicinal and edible value, yacon is consumed by different populations. Yacon is unique due to its high fructo-oligosaccharide and inulin content, as well as flavonoids, sesquiterpene lactones, and phenolic acids. Roots can be used to produce flour, which is less perishable and can be applied in various industrial products. This systematic review focuses on the effects of yacon flour on metabolic parameters. PubMed, Cochrane, Embase, Science Direct, Scopus, Web of Science, and Google Scholar databases were consulted, and PRISMA guidelines were followed in the selection of the studies. In total, 526 articles were found in the databases, and of these, only 28 full texts were eligible for inclusion. After applying the inclusion and exclusion criteria, seven studies were finally included. The results showed that the use of yacon flour can reduce glycemia, HbA1c, advanced glycation ends, plasma lipids, body fat mass, body weight, and waist circumference and improve intestinal microbiota and the antioxidant status. Further exploration of the effects of yacon flour is warranted, and additional clinical trials are necessary to determine the optimal daily consumption levels required to assist in improving metabolic parameters.
Collapse
Affiliation(s)
- Isabela Frazão da Silva
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Wesley Rossi Bragante
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marie Oshiiwa
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- UNIMAR Charitable Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Padilla-González GF, Rosselli A, Sadgrove NJ, Cui M, Simmonds MS. Mining the chemical diversity of the hemp seed ( Cannabis sativa L.) metabolome: discovery of a new molecular family widely distributed across hemp. FRONTIERS IN PLANT SCIENCE 2023; 14:1114398. [PMID: 37636102 PMCID: PMC10449600 DOI: 10.3389/fpls.2023.1114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Hemp (Cannabis sativa L.) is a widely researched industrial crop with a variety of applications in the pharmaceutical, nutraceutical, food, cosmetic, textile, and materials industries. Although many of these applications are related to its chemical composition, the chemical diversity of the hemp metabolome has not been explored in detail and new metabolites with unknown properties are likely to be discovered. In the current study, we explored the chemical diversity of the hemp seed metabolome through an untargeted metabolomic study of 52 germplasm accessions to 1) identify new metabolites and 2) link the presence of biologically important molecules to specific accessions on which to focus on in future studies. Multivariate analysis of mass spectral data demonstrated large variability of the polar chemistry profile between accessions. Five main groups were annotated based on their similar metabolic fingerprints. The investigation also led to the discovery of a new compound and four structural analogues, belonging to a previously unknown chemical class in hemp seeds: cinnamic acid glycosyl sulphates. Although variability in the fatty acid profiles was not as marked as the polar components, some accessions had a higher yield of fatty acids, and variation in the ratio of linoleic acid to α-linolenic acid was also observed, with some varieties closer to 3:1 (reported as optimal for human nutrition). We found that that cinnamic acid amides and lignanamides, the main chemical classes of bioactive metabolites in hemp seed, were more concentrated in the Spanish accession Kongo Hanf (CAN58) and the French accession CAN37, while the Italian cultivar Eletta Campana (CAN48) demonstrated the greatest yield of fatty acids. Our results indicate that the high variability of bioactive and novel metabolites across the studied hemp seed accessions may influence claims associated with their commercialization and inform breeding programs in cultivar development.
Collapse
Affiliation(s)
| | - Abigail Rosselli
- Enhanced Partnerships Department Royal Botanic Gardens, Kew, London, United Kingdom
| | - Nicholas J. Sadgrove
- Enhanced Partnerships Department Royal Botanic Gardens, Kew, London, United Kingdom
- Department of Botany and Plant Biotechnology, University of Johannesburg (Auckland Park Campus), Auckland Park, Johannesburg, South Africa
| | - Max Cui
- Enhanced Partnerships Department Royal Botanic Gardens, Kew, London, United Kingdom
| | | |
Collapse
|
5
|
Are South African Wild Foods the Answer to Rising Rates of Cardiovascular Disease? DIVERSITY 2022. [DOI: 10.3390/d14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising burden of cardiovascular disease in South Africa gives impetus to managerial changes, particularly to the available foods in the market. Since there are many economically disadvantaged groups in urban societies who are at the forefront of the CVD burden, initiatives to make healthier foods available should focus on affordability in conjunction with improved phytochemical diversity to incentivize change. The modern obesogenic diet is deficient in phytochemicals that are protective against the metabolic products of sugar metabolism, i.e., inflammation, reactive oxygen species and mitochondrial fatigue, whereas traditional southern African food species have high phytochemical diversity and are also higher in soluble dietary fibres that modulate the release of sugars from starches, nurture the microbiome and produce digestive artefacts that are prophylactic against cardiovascular disease. The examples of indigenous southern African food species with high horticultural potential that can be harvested sustainably to feed a large market of consumers include: Aloe marlothii, Acanthosicyos horridus, Adansonia digitata, Aloe ferox, Amaranthus hybridus, Annesorhiza nuda, Aponogeton distachyos, Bulbine frutescens, Carpobrotus edulis, Citrullus lanatus, Dioscorea bulbifera, Dovyalis caffra, Eleusine coracana, Lagenaria siceraria, Mentha longifolia, Momordica balsamina, Pelargonium crispum, Pelargonium sidoides, Pennisetum glaucum, Plectranthus esculentus, Schinziophyton rautanenii, Sclerocarya birrea, Solenostemon rotundifolius, Talinum caffrum, Tylosema esculentum, Vigna unguiculata and Vigna subterranea. The current review explains the importance of phytochemical diversity in the human diet, it gives a lucid explanation of phytochemical groups and links the phytochemical profiles of these indigenous southern African foods to their protective effects against cardiovascular disease.
Collapse
|
6
|
Renai L, Ulaszewska M, Mattivi F, Bartoletti R, Del Bubba M, van der Hooft JJJ. Combining Feature-Based Molecular Networking and Contextual Mass Spectral Libraries to Decipher Nutrimetabolomics Profiles. Metabolites 2022; 12:metabo12101005. [PMID: 36295906 PMCID: PMC9610267 DOI: 10.3390/metabo12101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Untargeted metabolomics approaches deal with complex data hindering structural information for the comprehensive analysis of unknown metabolite features. We investigated the metabolite discovery capacity and the possible extension of the annotation coverage of the Feature-Based Molecular Networking (FBMN) approach by adding two novel nutritionally-relevant (contextual) mass spectral libraries to the existing public ones, as compared to widely-used open-source annotation protocols. Two contextual mass spectral libraries in positive and negative ionization mode of ~300 reference molecules relevant for plant-based nutrikinetic studies were created and made publicly available through the GNPS platform. The postprandial urinary metabolome analysis within the intervention of Vaccinium supplements was selected as a case study. Following the FBMN approach in combination with the added contextual mass spectral libraries, 67 berry-related and human endogenous metabolites were annotated, achieving a structural annotation coverage comparable to or higher than existing non-commercial annotation workflows. To further exploit the quantitative data obtained within the FBMN environment, the postprandial behavior of the annotated metabolites was analyzed with Pearson product-moment correlation. This simple chemometric tool linked several molecular families with phase II and phase I metabolism. The proposed approach is a powerful strategy to employ in longitudinal studies since it reduces the unknown chemical space by boosting the annotation power to characterize biochemically relevant metabolites in human biofluids.
Collapse
Affiliation(s)
- Lapo Renai
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: (L.R.); (M.U.); (J.J.J.v.d.H.)
| | - Marynka Ulaszewska
- Metabolomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, San Michele all’Adige, 38098 Trento, Italy
- Correspondence: (L.R.); (M.U.); (J.J.J.v.d.H.)
| | - Fulvio Mattivi
- Metabolomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, San Michele all’Adige, 38098 Trento, Italy
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Via Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Riccardo Bartoletti
- Department of Translational Research and New Technologies, University of Pisa, Via Risorgimento 36, 56126 Pisa, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Justin J. J. van der Hooft
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
- Correspondence: (L.R.); (M.U.); (J.J.J.v.d.H.)
| |
Collapse
|
7
|
Freire VF, Gubiani JR, Spencer TM, Hajdu E, Ferreira AG, Ferreira DAS, de Castro Levatti EV, Burdette JE, Camargo CH, Tempone AG, Berlinck RGS. Feature-Based Molecular Networking Discovery of Bromopyrrole Alkaloids from the Marine Sponge Agelas dispar. JOURNAL OF NATURAL PRODUCTS 2022; 85:1340-1350. [PMID: 35427139 PMCID: PMC9680911 DOI: 10.1021/acs.jnatprod.2c00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Investigation of the marine sponge Agelas dispar MeOH fractions using feature-based molecular networking, dereplication, and isolation led to the discovery of new bromopyrrole-derived metabolites. An in-house library of bromopyrrole alkaloids previously isolated from A. dispar and Dictyonella sp. was utilized, along with the investigation of an MS/MS fragmentation of these compounds. Our strategy led to the isolation and identification of the disparamides A-C (1-3), with a novel carbon skeleton. Additionally, new dispyrins B-F (4-8) and nagelamides H2 and H3 (9 and 10) and known nagelamide H (11), citrinamine B (12), ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) were also isolated and identified by analysis of spectroscopic data. Analysis of MS/MS fragmentation data and molecular networking analysis indicated the presence of hymenidin (16), oroidin (17), dispacamide (18), monobromodispacamide (19), keramadine (20), longamide B (21), methyl ester of longamide B (22), hanishin (23), methyl ester of 3-debromolongamide B (24), and 3-debromohanishin (25). Antibacterial activity of ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) was evaluated against susceptible and multi-drug-resistant ESKAPE pathogenic bacteria Klabsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterococcus faecalis. Dibromoageliferin (15) displayed the most potent antimicrobial activity against all tested susceptible and MDR strains. Compounds 13-15 presented no significant hemolytic activity up to 100 μM.
Collapse
Affiliation(s)
- Vítor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Tara M Spencer
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040, Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Dayana A S Ferreira
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Erica V de Castro Levatti
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Carlos Henrique Camargo
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Andre G Tempone
- Instituto Adolfo Lutz, Secretaria de Saúde do Estado de São Paulo, Avenida Dr. Arnaldo, 351 8 Andar, sala 9, CEP 01246-000 Sao Paulo, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
8
|
Green A, Padilla-Gonzalez GF, Phumthum M, Simmonds MSJ, Sadgrove NJ. Comparative Metabolomics of Reproductive Organs in the Genus Aesculus (Sapindaceae) Reveals That Immature Fruits Are a Key Organ of Procyanidin Accumulation and Bioactivity. PLANTS (BASEL, SWITZERLAND) 2021; 10:2695. [PMID: 34961166 PMCID: PMC8708636 DOI: 10.3390/plants10122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Fruit from A. hippocastanum L. are used commercially for chronic venous insufficiency (CVI). The isomeric mixture of pentacyclic triterpenoid saponins (β-aescin) exert anti-inflammatory effects. Hence, research has focused on β-aescin, yet the diversity, accumulation, and bioactivity of organ-specific secondary metabolites represent missed pharmacological opportunities. To this end, we applied an untargeted metabolomics approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to the chemical profiles of flowers, immature fruits, and pedicels from 40 specimens across 18 species of Aesculus. Principal component analysis (PCA), orthogonal partial least squares (OPLS-DA), and molecular networking revealed stronger chemical differences between plant organs, than between species. Flowers are rich in glycosylated flavonoids, pedicels in organic acids and flavonoid aglycones, and immature fruits in monomeric flavan-3-ols and procyanidins. Although a high diversity of flavonoids and procyanidins was observed, the relative amounts differed by plant organ. Fruit extracts demonstrated the strongest antifungal (Saccharomyces cerevisiae) and antioxidant activity, likely from the procyanidins. Overall, secondary metabolite profiles are organ-specific, and fruits accumulate antifungal and antioxidant compounds. Due to the chemical similarity between species, similar effects may be achieved between species. This creates incentives for further exploration of the entire genus, in bioprospecting for potential therapeutic leads.
Collapse
Affiliation(s)
- Alison Green
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| | | | - Methee Phumthum
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 999 Phutthamonthon Sai 4 Rd, Salaya, Phutthamonthon District, Nakhon Pathom 73170, Thailand
| | - Monique S. J. Simmonds
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| | - Nicholas J. Sadgrove
- Royal Botanic Gardens, Kew, Richmond Surrey, London TW9 3AD, UK; (A.G.); (G.F.P.-G.); (M.P.); (M.S.J.S.)
| |
Collapse
|
9
|
Reis FR, Marques C, Moraes ACSD, Masson ML. Effect of processing methods on yacon roots health-promoting compounds and related properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sadgrove NJ. Honest nutraceuticals, cosmetics, therapies, and foods (NCTFs): standardization and safety of natural products. Crit Rev Food Sci Nutr 2021; 62:4326-4341. [PMID: 33480270 DOI: 10.1080/10408398.2021.1874286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the increasing demand for natural products by the consumer in the marketplace it is necessary to see a proportional increase in behind-the-scenes science to ensure that the ideology of safety and honesty, that is justifiably expected by the wider public, is adequately satisfied. It is of essence to have a fair yet firm governance of nutraceuticals, cosmetics, therapies, and foods. However, with increasing sophistications in adulteration and "claim" loopholes that make it easier for adulterated or counterfeited natural products to be "fudged" to meet the pharmacopeia standards, governance protocols must utilize an "identification and authentication" approach that goes beyond the Pharmacopeia standards to help regulate and transparently communicate natural products in the commercial context. While it is becoming a rat race in keeping commercial natural products honest, modern technology can support authenticators and adequately defeat these challenges.
Collapse
|