1
|
Titkare N, Chaturvedi S, Borah S, Sharma N. Advances in mass spectrometry for metabolomics: Strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr 2024; 38:e6019. [PMID: 39370857 DOI: 10.1002/bmc.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Mass spectrometry (MS) plays a crucial role in metabolomics, especially in the discovery of disease biomarkers. This review outlines strategies for identifying metabolites, emphasizing precise and detailed use of MS techniques. It explores various methods for quantification, discusses challenges encountered, and examines recent breakthroughs in biomarker discovery. In the field of diagnostics, MS has revolutionized approaches by enabling a deeper understanding of tissue-specific metabolic changes associated with disease. The reliability of results is ensured through robust experimental design and stringent system suitability criteria. In the past, data quality, standardization, and reproducibility were often overlooked despite their significant impact on MS-based metabolomics. Progress in this field heavily depends on continuous training and education. The review also highlights the emergence of innovative MS technologies and methodologies. MS has the potential to transform our understanding of metabolic landscapes, which is crucial for disease biomarker discovery. This article serves as an invaluable resource for researchers in metabolomics, presenting fresh perspectives and advancements that propels the field forward.
Collapse
Affiliation(s)
- Nikhil Titkare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Bozza D, Barboni D, Spadafora ND, Felletti S, De Luca C, Nosengo C, Compagnin G, Cavazzini A, Catani M. Untargeted metabolomics approaches for the characterization of cereals and their derived products by means of liquid chromatography coupled to high resolution mass spectrometry. JOURNAL OF CHROMATOGRAPHY OPEN 2024; 6:100168. [DOI: 10.1016/j.jcoa.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Zhu P, Dubbelman AC, Hunter C, Genangeli M, Karu N, Harms A, Hankemeier T. Development of an Untargeted LC-MS Metabolomics Method with Postcolumn Infusion for Matrix Effect Monitoring in Plasma and Feces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:590-602. [PMID: 38379502 PMCID: PMC10921459 DOI: 10.1021/jasms.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Untargeted metabolomics based on reverse phase LC-MS (RPLC-MS) plays a crucial role in biomarker discovery across physiological and disease states. Standardizing the development process of untargeted methods requires paying attention to critical factors that are under discussed or easily overlooked, such as injection parameters, performance assessment, and matrix effect evaluation. In this study, we developed an untargeted metabolomics method for plasma and fecal samples with the optimization and evaluation of these factors. Our results showed that optimizing the reconstitution solvent and sample injection amount was critical for achieving the balance between metabolites coverage and signal linearity. Method validation with representative stable isotopically labeled standards (SILs) provided insights into the analytical performance evaluation of our method. To tackle the issue of the matrix effect, we implemented a postcolumn infusion (PCI) approach to monitor the overall absolute matrix effect (AME) and relative matrix effect (RME). The monitoring revealed distinct AME and RME profiles in plasma and feces. Comparing RME data obtained for SILs through postextraction spiking with those monitored using PCI compounds demonstrated the comparability of these two methods for RME assessment. Therefore, we applied the PCI approach to predict the RME of 305 target compounds covered in our in-house library and found that targets detected in the negative polarity were more vulnerable to the RME, regardless of the sample matrix. Given the value of this PCI approach in identifying the strengths and weaknesses of our method in terms of the matrix effect, we recommend implementing a PCI approach during method development and applying it routinely in untargeted metabolomics.
Collapse
Affiliation(s)
- Pingping Zhu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Anne-Charlotte Dubbelman
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | | | - Michele Genangeli
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Naama Karu
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| |
Collapse
|
4
|
Maisl C, Doppler M, Seidl B, Bueschl C, Schuhmacher R. Untargeted Plant Metabolomics: Evaluation of Lyophilization as a Sample Preparation Technique. Metabolites 2023; 13:686. [PMID: 37367843 DOI: 10.3390/metabo13060686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Lyophilization is a common method used for stabilizing biological samples prior to storage or to concentrate extracts. However, it is possible that this process may alter the metabolic composition or lead to the loss of metabolites. In this study, the performance of lyophilization is investigated in the example of wheat roots. To this end, native and 13C-labelled, fresh or already lyophilized root samples, and (diluted) extracts with dilution factors up to 32 and authentic reference standards were investigated. All samples were analyzed using RP-LC-HRMS. Results show that using lyophilization for the stabilization of plant material altered the metabolic sample composition. Overall, 7% of all wheat metabolites detected in non-lyophilized samples were not detected in dried samples anymore, and up to 43% of the remaining metabolites exhibited significantly increased or decreased abundances. With respect to extract concentration, less than 5% of the expected metabolites were completely lost by lyophilization and the recovery rates of the remaining metabolites were slightly reduced with increasing concentration factors to an average of 85% at an enrichment factor of 32. Compound annotation did not indicate specific classes of wheat metabolites to be affected.
Collapse
Affiliation(s)
- Christina Maisl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Bernhard Seidl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
5
|
Shen D, Lu Z, Zhong J, Zhang S, Ye Q, Wang W, Gan J. Combination of high specific activity carbon-14 labeling and high resolution mass spectrometry to study pesticide metabolism in crops: Metabolism of cycloxaprid in rice. ENVIRONMENT INTERNATIONAL 2021; 157:106879. [PMID: 34543936 DOI: 10.1016/j.envint.2021.106879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The study of pesticide metabolism in crops is critical for assessing the mode of action and environmental risks of pesticides. However, the study of pesticide metabolism in crops is usually complicated and it is often a daunting challenge to accurately screen the metabolites of novel pesticides in complex matrices. This study demonstrated a combined use of high-specific activity carbon-14 labeling and high-resolution mass spectrometry (HSA-14C-HRMS) for metabolism profiling of a novel neonicotinoid cycloxaprid in rice. By generating the characteristic radioactive peaks on the liquid chromatogram, the use of 14C can eliminate the severe interference of complex matrices and quickly probe target compounds; by producing ion pairs with unique abundance ratios on HRMS, high-specific activity labeling can effectively exclude false matrix positives and promote the elucidation of metabolite structure. The structures of 15 metabolites were identified, three of which were further confirmed by authentic standards. Based on these metabolites, a metabolic profile of cycloxaprid was established, which includes denitrification, demethylation, imidazolidine hydroxylation and ring cleavage olefin formation, oxidation and carboxylation reactions. The strategy of combining high-specific activity 14C labeling and HRMS offers unique advantages and provides a powerful solution for profiling unknown metabolites of novel pesticides in complex matrices, especially when traditional non-labeling methods are not feasible.
Collapse
Affiliation(s)
- Dahang Shen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48202, USA
| | - Jiayin Zhong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Scolari F, Khamis FM, Pérez-Staples D. Beyond Sperm and Male Accessory Gland Proteins: Exploring Insect Reproductive Metabolomes. Front Physiol 2021; 12:729440. [PMID: 34690804 PMCID: PMC8529219 DOI: 10.3389/fphys.2021.729440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
Insect seminal fluid, the non-sperm component of the ejaculate, comprises a variegated set of molecules, including, but not limited to, lipids, proteins, carbohydrates, salts, hormones, nucleic acids, and vitamins. The identity and functional role of seminal fluid proteins (SFPs) have been widely investigated, in multiple species. However, most of the other small molecules in insect ejaculates remain uncharacterized. Metabolomics is currently adopted to deepen our understanding of complex biological processes and in the last 15years has been applied to answer different physiological questions. Technological advances in high-throughput methods for metabolite identification such as mass spectrometry and nuclear magnetic resonance (NMR) are now coupled to an expanded bioinformatics toolbox for large-scale data analysis. These improvements allow for the processing of smaller-sized samples and for the identification of hundreds to thousands of metabolites, not only in Drosophila melanogaster but also in disease vectors, animal, and agricultural pests. In this review, we provide an overview of the studies that adopted metabolomics-based approaches in insects, with a particular focus on the reproductive tract (RT) of both sexes and the ejaculate. Progress in the field of metabolomics will contribute not only to achieve a deeper understanding of the composition of insect ejaculates and how they are affected by endogenous and exogenous factors, but also to provide increasingly powerful tools to decipher the identity and molecular interactions between males and females during and after mating.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics (IGM)-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Diana Pérez-Staples
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|