1
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
2
|
Mantzourani C, Mesimeri ID, Kokotou MG. Free Fatty Acid Determination in Broccoli Tissues Using Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules 2024; 29:754. [PMID: 38398506 PMCID: PMC10891939 DOI: 10.3390/molecules29040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Broccoli (Brassica oleracea L. var. italica Plenck) is a widely consumed vegetable, very popular due to its various nutritional and bioactive components. Since studies on the lipid components of broccoli have been limited so far, the aim of the present work was the study of free fatty acids (FFAs) present in different broccoli parts, aerial and underground. The direct determination of twenty-four FFAs in broccoli tissues (roots, leaves, and florets) was carried out, using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method in a 10 min single run. Linolenic acid was found to be the most abundant FFA in all different broccoli parts in quantities ranging from 0.76 to 1.46 mg/g, followed by palmitic acid (0.17-0.22 mg/g) and linoleic acid (0.06-0.08 mg/g). To extend our knowledge on broccoli's bioactive components, for the first time, the existence of bioactive oxidized fatty acids, namely hydroxy and oxo fatty acids, was explored in broccoli tissues adopting an HRMS-based lipidomics approach. 16- and 2-hydroxypalmitic acids were detected in all parts of broccoli studied, while ricinoleic acid was detected for the first time as a component of broccoli.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Irene-Dimitra Mesimeri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
3
|
Bangma J, McCord J, Giffard N, Buckman K, Petali J, Chen C, Amparo D, Turpin B, Morrison G, Strynar M. Analytical method interferences for perfluoropentanoic acid (PFPeA) and perfluorobutanoic acid (PFBA) in biological and environmental samples. CHEMOSPHERE 2023; 315:137722. [PMID: 36592832 PMCID: PMC10165721 DOI: 10.1016/j.chemosphere.2022.137722] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 05/10/2023]
Abstract
While high-resolution MS (HRMS) can be used for identification and quantification of novel per- and polyfluorinated alkyl substances (PFAS), low-resolution MS/MS is the more commonly used and affordable approach for routine PFAS monitoring. Of note, perfluoropentanoic acid (PFPeA) and perfluorobutanoic acid (PFBA), two of the smaller carboxylic acid containing-PFAS, have only one major MS/MS transition, preventing the use of qualitative transitions for verification on low-resolution instrumentation. Recently our lab has observed widespread chemical interference in the quantitative ion channel for PFPeA (263 → 219) and PFBA (213 → 169) in numerous matrices. PFPeA interference was investigated using HRMS and putatively assigned as a diprotic unsaturated fatty acid (263.1288 Da) in shellfish and a separate interferent (13C isotope of 262.1087 Da) in hot cocoa, which had been previously described by the FDA. PFBA interference caused by saturated oxo-fatty acids, previously demonstrated in tissue, was also observed in liquid condensate from a residential air conditioning unit. Therefore, in support of PFAS analysis on low-resolution instrumentation, authors recommend several adjustments to analytical methods including altering liquid chromatography (LC) conditions as well as using matched internal standards to investigate and expressly confirm PFBA and PFPeA detections in both biological and environmental samples.
Collapse
Affiliation(s)
- Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - James McCord
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nathan Giffard
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Kate Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Jonathan Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Daniel Amparo
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Turpin
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Strynar
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Free fatty acid profiling of Greek yogurt by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. Food Res Int 2022; 160:111751. [DOI: 10.1016/j.foodres.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
5
|
Liquid Chromatography-Mass Spectrometry (LC-MS) Derivatization-Based Methods for the Determination of Fatty Acids in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175717. [PMID: 36080484 PMCID: PMC9458108 DOI: 10.3390/molecules27175717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Fatty acids (FAs) play pleiotropic roles in living organisms, acting as signaling molecules and gene regulators. They are present in plants and foods and may affect human health by food ingestion. As a consequence, analytical methods for their determination in biological fluids, plants and foods have attracted high interest. Undoubtedly, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs. Due to the inherent poor ionization efficiency of FAs, their chemical derivatization prior to analysis is often employed. Usually, the derivatization of the FA carboxyl group aims to charge reversal, allowing detection and quantification in positive ion mode, thus, resulting in an increase in sensitivity in determination. Another approach is the derivatization of the double bond of unsaturated FAs, which aims to identify the double bond location. The present review summarizes the various classes of reagents developed for FA derivatization and discusses their applications in the liquid chromatography-MS (LC-MS) analysis of FAs in various matrices, including plasma and feces. In addition, applications for the determination of eicosanoids and fatty acid esters of hydroxy fatty acids (FAHFAs) are discussed.
Collapse
|
6
|
Kokotou MG, Mantzourani C, Batsika CS, Mountanea OG, Eleftheriadou I, Kosta O, Tentolouris N, Kokotos G. Lipidomics Analysis of Free Fatty Acids in Human Plasma of Healthy and Diabetic Subjects by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). Biomedicines 2022; 10:biomedicines10051189. [PMID: 35625925 PMCID: PMC9138513 DOI: 10.3390/biomedicines10051189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted analytical methods for the determination of free fatty acids (FFAs) in human plasma are of high interest because they may help in identifying biomarkers for diseases and in monitoring the progress of a disease. The determination of FFAs is of particular importance in the case of metabolic disorders because FFAs have been associated with diabetes. We present a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, which allows the simultaneous determination of 74 FFAs in human plasma. The method is fast (10-min run) and straightforward, avoiding any derivatization step and tedious sample preparation. A total of 35 standard saturated and unsaturated FFAs, as well as 39 oxygenated (either hydroxy or oxo) saturated FFAs, were simultaneously detected and quantified in plasma samples from 29 subjects with type 2 diabetes mellitus (T2D), 14 with type 1 diabetes mellitus (T1D), and 28 healthy subjects. Alterations in the levels of medium-chain FFAs (C6:0 to C10:0) were observed between the control group and T2D and T1D patients.
Collapse
Affiliation(s)
- Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.G.K.); (C.M.); (C.S.B.); (O.G.M.)
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.G.K.); (C.M.); (C.S.B.); (O.G.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
| | - Charikleia S. Batsika
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.G.K.); (C.M.); (C.S.B.); (O.G.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
| | - Olga G. Mountanea
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.G.K.); (C.M.); (C.S.B.); (O.G.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
| | - Ioanna Eleftheriadou
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
- Diabetes Center, First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece;
| | - Ourania Kosta
- Diabetes Center, First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece;
| | - Nikolaos Tentolouris
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
- Diabetes Center, First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece;
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.G.K.); (C.M.); (C.S.B.); (O.G.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.E.); (N.T.)
- Correspondence: ; Tel.: +30-210-7274462
| |
Collapse
|
7
|
Bangma JT, Reiner J, Fry RC, Manuck T, McCord J, Strynar MJ. Identification of an Analytical Method Interference for Perfluorobutanoic Acid in Biological Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:1085-1090. [PMID: 35127964 PMCID: PMC8811701 DOI: 10.1021/acs.estlett.1c00901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The investigation of per- and polyfluorinated alkyl substances (PFAS) in environmental and biological samples relies on both high- and low-resolution mass spectrometry (MS) techniques. While high-resolution MS (HRMS) can be used for identification and quantification of novel compounds, low-resolution MS is the more commonly used and affordable approach for studies examining previously identified PFAS. Of note, perfluorobutanoic acid (PFBA) is one of the smaller PFAS observed in biological and environmental samples and has only one major MS/MS transition, preventing the use of qualitative transitions for verification. Recently, our laboratories undertook a targeted investigation of PFAS in the human placenta from high-risk pregnancies utilizing low-resolution, targeted MS/MS. Examination of placental samples revealed a widespread (n = 93/122 (76%)) chemical interferent in the quantitative ion channel for PFBA (213 → 169). PFBA concentrations were influenced by up to ∼3 ng/g. Therefore, additional chromatographic and HRMS/MS instrumentation was utilized to investigate the suspect peak and putatively assign the identity of the interfering compound as the saturated oxo-fatty acid (SOFA) 3-oxo-dodecanoic acid.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Jessica Reiner
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tracy Manuck
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James McCord
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
8
|
Danchuk V, Ushkalov V, Midyk S, Vigovska L, Danchuk O, Korniyenko V. MILK LIPIDS AND SUBCLINICAL MASTITIS. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.15673/fst.v15i2.2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article deals with the process of obtaining quality raw milk by analyzing its lipid composition. The lipid composition of raw milk depends on many factors, among which, first of all, is the species, the composition of the diet and the physiological state of the breast. In recent years, a large amount of data has accumulated on the fluctuations of certain lipid parameters of milk depending on the type, age, lactation, diet, time of year, exercise, animal husbandry technology, physiological state of the lactating organism in general and breast status in particular. Factors of regulation of fatty acid composition of raw milk: genetically determined parameters of quality and safety; fatty acid composition of the diet; synthesis of fatty acids by microorganisms of the digestive tract; synthesis of fatty acids in the breast; physiological state of the breast. The milk of each species of productive animals has its own specific lipid profile and is used in the formulation of certain dairy products to obtain the planned technological and nutritional parameters. Diagnosis of productive animals for subclinical mastitis involves the use of auxiliary (thermometry, thermography, electrical conductivity) and laboratory research methods: counting the number of somatic cells; use of specialized tests; microbiological studies of milk; biochemical studies of milk. The biochemical component in the diagnosis of subclinical forms of mastitis is underestimated. An increase in body temperature implies an increase in the intensity of heat release during the oxidation of substrates, sometimes due to a decrease in the intensity of synthesis of energy-intensive compounds. There are simply no other sources of energy in the body. The situation is the same with certain parts of the metabolism, which are aimed at the development of protective reactions to the etiological factor aimed at the defeat of the breast. That is why the biochemical composition of breast secretions in the absence of clinical signs of mastitis undergoes biochemical changes and the task of scientists is to develop mechanisms for clear tracking of such changes, identification of animals with subclinical forms of mastitis and effective treatment.
Collapse
|