1
|
Rempfert KR, Kraus EA, Nothaft DB, Dildar N, Spear JR, Sepúlveda J, Templeton AS. Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids. Front Microbiol 2023; 14:1198786. [PMID: 38029177 PMCID: PMC10667739 DOI: 10.3389/fmicb.2023.1198786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Nadia Dildar
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Julio Sepúlveda
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| |
Collapse
|
2
|
Ren H, Zhang F, Zhu X, Lamlom SF, Zhao K, Zhang B, Wang J. Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development. Front Microbiol 2023; 14:1233351. [PMID: 37799597 PMCID: PMC10548211 DOI: 10.3389/fmicb.2023.1233351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Rhizosphere microorganisms can effectively promote the stress resistance of plants, and some beneficial rhizosphere microorganisms can significantly promote the growth of crops under salt stress, which has the potential to develop special microbial fertilizers for increasing the yield of saline-alkali land and provides a low-cost and environmentally friendly new strategy for improving the crop yield of saline-alkali cultivated land by using agricultural microbial technology. Methods In May 2022, a field study in a completely randomized block design was conducted at the Heilongjiang Academy of Agricultural Sciences to explore the correlation between plant rhizosphere microorganisms and soybean growth in saline-alkali soil. Two soybean cultivars (Hening 531, a salt-tolerant variety, and 20_1846, a salt-sensitive variety) were planted at two experimental sites [Daqing (normal condition) and Harbin (saline-alkali conditions)], aiming to investigate the performance of soybean in saline-alkali environments. Results Soybeans grown in saline-alkali soil showed substantial reductions in key traits: plant height (25%), pod number (26.6%), seed yield (33%), and 100 seed weight (13%). This underscores the unsuitability of this soil type for soybean cultivation. Additionally, microbial analysis revealed 43 depleted and 56 enriched operational taxonomic units (OTUs) in the saline-alkali soil compared to normal soil. Furthermore, an analysis of ion-associated microbes identified 85 mOTUs with significant correlations with various ions. A co-occurrence network analysis revealed strong relationships between specific mOTUs and ions, such as Proteobacteria with multiple ions. In addition, the study investigated the differences in rhizosphere species between salt-tolerant and salt-sensitive soybean varieties under saline-alkali soil conditions. Redundancy analysis (RDA) indicated that mOTUs in saline-alkali soil were associated with pH and ions, while mOTUs in normal soil were correlated with Ca2+ and K+. Comparative analyses identified significant differences in mOTUs between salt-tolerant and salt-sensitive varieties under both saline-alkali and normal soil conditions. Planctomycetes, Proteobacteria, and Actinobacteria were dominant in the bacterial community of saline-alkali soil, with significant enrichment compared to normal soil. The study explored the functioning of the soybean rhizosphere key microbiome by comparing metagenomic data to four databases related to the carbon, nitrogen, phosphorus, and sulfur cycles. A total of 141 KOs (KEGG orthologues) were identified, with 66 KOs related to the carbon cycle, 16 KOs related to the nitrogen cycle, 48 KOs associated with the phosphorus cycle, and 11 KOs linked to the sulfur cycle. Significant correlations were found between specific mOTUs, functional genes, and phenotypic traits, including per mu yield (PMY), grain weight, and effective pod number per plant. Conclusion Overall, this study provides comprehensive insights into the structure, function, and salt-related species of soil microorganisms in saline-alkali soil and their associations with salt tolerance and soybean phenotype. The identification of key microbial species and functional categories offers valuable information for understanding the mechanisms underlying plant-microbe interactions in challenging soil conditions.
Collapse
Affiliation(s)
- Honglei Ren
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Fengyi Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Xiao Zhu
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Kezhen Zhao
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Bixian Zhang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| | - Jiajun Wang
- Heilongjiang Academy of Agricultural Sciences, Soybean Research Institute, Harbin, China
| |
Collapse
|
3
|
Composition, structure, and functional shifts of prokaryotic communities in response to co-composting of various nitrogenous green feedstocks. BMC Microbiol 2023; 23:50. [PMID: 36859170 PMCID: PMC9979578 DOI: 10.1186/s12866-023-02798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Thermophilic composting is a promising method of sanitizing pathogens in manure and a source of agriculturally important thermostable enzymes and microorganisms from organic wastes. Despite the extensive studies on compost prokaryotes, shifts in microbial profiles under the influence of various green materials and composting days are still not well understood, considering the complexity of the green material sources. Here, the effect of regimens of green composting material on the diversity, abundance, and metabolic capacity of prokaryotic communities in a thermophilic compost environment was examined. METHODS Total community 16S rRNA was recovered from triplicate compost samples of Lantana-based, Tithonia-based, Grass-based, and mixed (Lantana + Tithonia + Grass)- based at 21, 42, 63, and 84 days of composting. The 16S rRNA was sequenced using the Illumina Miseq platform. Bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 (DADA2) R version 4.1 and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) pipelines for community structure and metabolic profiles, respectively. In DADA2, prokaryotic classification was done using the Refseq-ribosomal database project (RDP) and SILVA version 138 databases. RESULTS Our results showed apparent differences in prokaryotic community structure for total diversity and abundance within the four compost regimens and composting days. The study showed that the most prevalent phyla during composting included Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, and Proteobacteria. Additionally, there were differences in the overall diversity of metabolic pathways but no significant differences among the various compost treatments on major metabolic pathways like carbohydrate biosynthesis, carbohydrate degradation, and nitrogen biosynthesis. CONCLUSION Various sources of green material affect the succession of compost nutrients and prokaryotic communities. The similarity of amounts of nutrients, such as total Nitrogen, at the end of the composting process, despite differences in feedstock material, indicates a significant influence of composting days on the stability of nutrients during composting.
Collapse
|
4
|
Rolli E, Marasco R, Fusi M, Scaglia B, Schubotz F, Mapelli F, Ciccazzo S, Brusetti L, Trombino L, Tambone F, Adani F, Borin S, Daffonchio D. Environmental micro-niche filtering shapes bacterial pioneer communities during primary colonization of a Himalayas' glacier forefield. Environ Microbiol 2022; 24:5998-6016. [PMID: 36325730 PMCID: PMC10099744 DOI: 10.1111/1462-2920.16268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Florence Schubotz
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sonia Ciccazzo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Luca Trombino
- Department of Earth Sciences 'Ardito Desio', University of Milan, Milan, Italy
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Fabrizio Adani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Gruppo Ricicla Lab, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|