1
|
Thomou C, Nussbaumer M, Grammenou E, Komini C, Vlaikou AM, Papageorgiou MP, Filiou MD. Early Handling Exerts Anxiolytic Effects and Alters Brain Mitochondrial Dynamics in Adult High Anxiety Mice. Mol Neurobiol 2024; 61:10593-10612. [PMID: 38761326 PMCID: PMC11584496 DOI: 10.1007/s12035-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/09/2024] [Indexed: 05/20/2024]
Abstract
Early handling (EH), the brief separation of pups from their mother during early life, has been shown to exert beneficial effects. However, the impact of EH in a high anxiety background as well as the role of brain mitochondria in shaping EH-driven responses remain elusive.Here, we used a high (HAB) vs. normal (NAB) anxiety-related behavior mouse model to study how EH affects pup and dam behavior in divergent anxiety backgrounds. We also investigated EH-induced effects at the protein and mRNA levels in adult male HAB mice in the hypothalamus, the prefrontal cortex, and the hippocampus by examining the same mitochondrial/energy pathways and mitochondrial dynamics mechanisms (fission, fusion, biogenesis, and mitophagy) in all three brain regions.EH exerts anxiolytic effects in adult HAB but not NAB male mice and does not affect HAB or NAB maternal behavior, although basal HAB vs. NAB maternal behaviors differ. In adult HAB male mice, EH does not impact oxidative phosphorylation (OXPHOS) and oxidative stress in any of the brain regions studied but leads to increased protein expression of glycolysis enzymes and a correlation of anxiety-related behavior with Krebs cycle enzymes in HAB mice in the hypothalamus. Intriguingly, EH alters mitochondrial dynamics by increasing hypothalamic DRP1, OPA1, and PGC1a protein levels. At the mRNA level, we observe altered, EH-driven mitochondrial dynamics mRNA signatures which predominantly affect the prefrontal cortex.Taken together, our results show that EH exerts anxiolytic effects in adulthood in high anxiety and modulates mitochondrial dynamics pathways in a brain region-specific manner.
Collapse
Affiliation(s)
- Christina Thomou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Eleni Grammenou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece.
- Institute of Biosciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Ko EA, Zhou T, Ko JH. Insight into noncanonical small noncoding RNAs in Influenza A virus infection. Virus Res 2024; 350:199474. [PMID: 39326700 PMCID: PMC11466576 DOI: 10.1016/j.virusres.2024.199474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Influenza A virus (IAV) induces acute respiratory infections in birds and various mammals, including humans, and presents a significant global public health concern, with considerable economic consequences. Recently, researchers have shown keen interest in noncanonical small noncoding RNAs (sncRNAs) as carriers of epigenetic information, including tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNA (rsRNAs), and Y RNA-derived small RNAs (ysRNAs). Particularly, tsRNAs and rsRNAs are detected in diverse species and demonstrate evolutionary conservation. We analyzed sncRNAs sequencing data in the pulmonary tissue of two genetically distinct mouse strains, C57BL/6J and DBA/2J, to explore strain-specific variations of sncRNAs in response to IAV infection. We systematically compiled information on noncanonical sncRNAs in these two strains and investigated the tsRNAs/rsRNAs/ysRNAs profiles influenced by IAV infection. Specifically, four noncanonical sncRNA families, including rsRNA-12S, GtsRNA-Arg-CCT, GtsRNA-Arg-TCT, and GtsRNA-Lys-TTT, exhibited upregulation upon IAV infection. Notably, DBA/2J mice showed earlier systemic differential expression of noncanonical sncRNAs after IAV infection compared to C57BL/6J mice. Additionally, our study revealed a strain-specific biogenesis of MtsRNAs in response to IAV infection. Also, distinct co-expression patterns of MtsRNAs were observed between C57BL/6J and DBA/2J mice, with DBA/2J mice showing broader positive co-expression of MtsRNAs with various sncRNA families compared to C57BL/6J mice. Our study provides a novel insight into noncanonical sncRNAs and their implications in IAV pathology and mouse strain specificity.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, South Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
3
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Poljak L, Miše B, Čičin-Šain L, Tvrdeić A. Ceftriaxone Inhibits Conditioned Fear and Compulsive-like Repetitive Marble Digging without Central Nervous System Side Effects Typical of Diazepam-A Study on DBA2/J Mice and a High-5HT Subline of Wistar-Zagreb 5HT Rats. Biomedicines 2024; 12:1711. [PMID: 39200176 PMCID: PMC11351474 DOI: 10.3390/biomedicines12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive-compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5-3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam.
Collapse
Affiliation(s)
- Ljiljana Poljak
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Branko Miše
- University Hospital for Infectious Diseases “Fran Mihaljević”, 10000 Zagreb, Croatia;
| | - Lipa Čičin-Šain
- Laboratory for Neurochemistry and Molecular Neurobiology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Schmitt O, Finnegan E, Trevarthen A, Wongsaengchan C, Paul ES, Mendl M, Fureix C. Exploring the similarities between risk factors triggering depression in humans and elevated in-cage "inactive but awake" behavior in laboratory mice. Front Vet Sci 2024; 11:1348928. [PMID: 38605924 PMCID: PMC11008528 DOI: 10.3389/fvets.2024.1348928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Depression is a human mental disorder that can also be inferred in non-human animals. This study explored whether time spent inactive but awake ("IBA") in the home-cage in mice was further triggered by risk factors similar to those increasing vulnerability to depression in humans (early life stress, genetic predispositions, adulthood stress). Methods Eighteen DBA/2 J and 18 C57BL/6 J females were tested, of which half underwent as pups a daily maternal separation on post-natal days 2-14 (early-life stress "ELS") (other half left undisturbed). To assess the effect of the procedure, the time the dams from which the 18 subjects were born spent active in the nest (proxy for maternal behavior) was recorded on post-natal days 2, 6, 10 and 14 for 1 h before separation and following reunion (matched times for controls), using live instantaneous scan sampling (total: 96 scans/dam). For each ELS condition, about half of the pups were housed post-weaning (i.e., from 27 days old on average) in either barren (triggering IBA and depression-like symptoms) or larger, highly enriched cages (n = 4-5 per group). Time mice spent IBA post-weaning was observed blind to ELS treatment using live instantaneous scan sampling in two daily 90-min blocks, two days/week, for 6 weeks (total: 192 scans/mouse). Data were analyzed in R using generalized linear mixed models. Results The dams were significantly more active in the nest over time (p = 0.016), however with no significant difference between strains (p = 0.18), ELS conditions (p = 0.20) and before/after separation (p = 0.83). As predicted, post-weaning barren cages triggered significantly more time spent IBA in mice than enriched cages (p < 0.0001). However, neither ELS (p = 0.4) nor strain (p = 0.84) significantly influenced time mice spent IBA, with no significant interaction with environmental condition (ELS × environment: p = 0.2861; strain × environment: p = 0.5713). Discussion Our results therefore only partly support the hypothesis that greater time spent IBA in mice is triggered by risk factors for human depression. We discuss possible explanations for this and further research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Renteria K, Nguyen H, Koh GY. The role of vitamin D in depression and anxiety disorders: a review of the literature. Nutr Neurosci 2024; 27:262-270. [PMID: 36877601 DOI: 10.1080/1028415x.2023.2186318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.
Collapse
Affiliation(s)
- Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Hien Nguyen
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| |
Collapse
|
7
|
Papageorgiou MP, Theodoridou D, Nussbaumer M, Syrrou M, Filiou MD. Deciphering the Metabolome under Stress: Insights from Rodent Models. Curr Neuropharmacol 2024; 22:884-903. [PMID: 37448366 PMCID: PMC10845087 DOI: 10.2174/1570159x21666230713094843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 07/15/2023] Open
Abstract
Despite intensive research efforts to understand the molecular underpinnings of psychological stress and stress responses, the underlying molecular mechanisms remain largely elusive. Towards this direction, a plethora of stress rodent models have been established to investigate the effects of exposure to different stressors. To decipher affected molecular pathways in a holistic manner in these models, metabolomics approaches addressing altered, small molecule signatures upon stress exposure in a high-throughput, quantitative manner provide insightful information on stress-induced systemic changes in the brain. In this review, we discuss stress models in mice and rats, followed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) metabolomics studies. We particularly focus on acute, chronic and early life stress paradigms, highlight how stress is assessed at the behavioral and molecular levels and focus on metabolomic outcomes in the brain and peripheral material such as plasma and serum. We then comment on common metabolomics patterns across different stress models and underline the need for unbiased -omics methodologies and follow-up studies of metabolomics outcomes to disentangle the complex pathobiology of stress and pertinent psychopathologies.
Collapse
Affiliation(s)
- Maria P. Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece
| | - Michaela D. Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
- Ιnstitute of Biosciences, University of Ioannina, Greece
| |
Collapse
|
8
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
9
|
Multi-Omics Analysis Reveals Myelin, Presynaptic and Nicotinate Alterations in the Hippocampus of G72/G30 Transgenic Mice. J Pers Med 2022; 12:jpm12020244. [PMID: 35207732 PMCID: PMC8878587 DOI: 10.3390/jpm12020244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
The primate-specific G72/G30 gene locus has been associated with major psychiatric disorders, such as schizophrenia and bipolar disorder. We have previously generated transgenic mice which carry the G72/G30 locus and express the longest G72 splice variant (LG72) protein encoded by this locus with schizophrenia-related symptoms. Here, we used a multi-omics approach, including quantitative proteomics and metabolomics to investigate molecular alterations in the hippocampus of G72/G30 transgenic (G72Tg) mice. Our proteomics analysis revealed decreased expression of myelin-related proteins and NAD-dependent protein deacetylase sirtuin-2 (Sirt2) as well as increased expression of the scaffolding presynaptic proteins bassoon (Bsn) and piccolo (Pclo) and the cytoskeletal protein plectin (Plec1) in G72Tg compared to wild-type (WT) mice. Metabolomics analysis indicated decreased levels of nicotinate in G72Tg compared to WT hippocampi. Decreased hippocampal protein expression for selected proteins, namely myelin oligodentrocyte glycoprotein (Mog), Cldn11 and myelin proteolipid protein (Plp), was confirmed with Western blot in a larger population of G72Tg and WT mice. The identified molecular pathway alterations shed light on the hippocampal function of LG72 protein in the context of neuropsychiatric phenotypes.
Collapse
|
10
|
Fureix C, Trevarthen AC, Finnegan EM, Bučková K, Paul ES, Mendl MT. Do greater levels of in-cage waking inactivity in laboratory mice reflect a spontaneous depression-like symptom? A pharmacological investigation. Pharmacol Biochem Behav 2021; 212:173311. [PMID: 34863797 DOI: 10.1016/j.pbb.2021.173311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
We previously identified in laboratory mice an inactive state [being awake with eyes open motionless within the home cage; inactive but awake, 'IBA'] sharing etiological factors and symptoms with human clinical depression. We further test the hypothesis that greater time spent displaying IBA indicates a depression-like state in mice by investigating whether the antidepressant Venlafaxine, environmental enrichment, and their combination, alleviate IBA. Seventy-two C57BL/6J and 72 DBA/2J female mice were pseudo-randomly housed post-weaning in mixed strain-pairs in non-enriched (NE; 48 pairs) or in environmentally enriched (EE; 24 pairs) cages. After 34 days, half of the mice housed in NE cages were either relocated to EE cages or left in NE cages. For each of these conditions, half of the mice drank either a placebo or the antidepressant Venlafaxine (10 mg/kg). The 48 mice housed in EE cages were all relocated to NE cages and allocated to either the placebo (n = 24) or Venlafaxine (n = 24). IBA data were collected prior to and after environmental adjustment by trained observers blind to the pharmacological and environmental adjustment treatments. Data were analyzed using GLM models. NE cages triggered more IBA than EE cages (Likelihood-Ratio-Test Chi23 = 53.501, p < 0.0001). Venlafaxine and environmental enrichment appeared equally effective at reducing IBA (LRT Chi23 = 18.262, p < 0.001), and combining these approaches did not magnify their effects. Enrichment removal triggered IBA increase (LRT Chi21 = 23.050, p < 0.001), but Venlafaxine did not overcome the increase in IBA resulting from enrichment loss (LTR Chi21 = 0.081, p = 0.775). Theoretical implications for putative depression-like states in mice, and further research directions, are discussed.
Collapse
Affiliation(s)
- Carole Fureix
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Anna C Trevarthen
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Emily M Finnegan
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Katarína Bučková
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom
| | - Elizabeth S Paul
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Michael T Mendl
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| |
Collapse
|
11
|
Iliou A, Vlaikou AM, Nussbaumer M, Benaki D, Mikros E, Gikas E, Filiou MD. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress 2021; 24:952-964. [PMID: 34553679 DOI: 10.1080/10253890.2021.1973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Angeliki-Maria Vlaikou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Dimitra Benaki
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Chemistry, Section of Analytical Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michaela D Filiou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|