1
|
Jank M, Doktor F, Zani A, Keijzer R. Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr Surg 2024; 33:151444. [PMID: 38996507 DOI: 10.1016/j.sempedsurg.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a complex developmental abnormality characterized by abnormal lung development, a diaphragmatic defect and cardiac dysfunction. Despite significant advances in management of CDH, mortality and morbidity continue to be driven by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. The etiology of CDH remains unknown, but CDH is presumed to be caused by a combination of genetic susceptibility and external/environmental factors. Current research employs multi-omics technologies to investigate the molecular profile and pathways inherent to CDH. The aim is to discover the underlying pathogenesis, new biomarkers and ultimately novel therapeutic targets. Stem cells and their cargo, non-coding RNAs and agents targeting inflammation and vascular remodeling have produced promising results in preclinical studies using animal models of CDH. Shortcomings in current therapies combined with an improved understanding of the pathogenesis in CDH have given rise to novel promising experimental treatments that are currently being evaluated in clinical trials. This review provides insight into current developments in translational research, ranging from the cellular origins of abnormal cardiopulmonary development in CDH and the identification of novel treatment targets in preclinical CDH models at the bench and their translation to clinical trials at the bedside.
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Doktor
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Renik-Jankowska W, Buczyńska A, Sidorkiewicz I, Kosiński P, Zbucka-Krętowska M. Exploring new perspectives on congenital diaphragmatic hernia: A comprehensive review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167105. [PMID: 38428682 DOI: 10.1016/j.bbadis.2024.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Congenital diaphragmatic hernia (CDH) represents a developmental anomaly that profoundly impacts the embryonic development of both the respiratory and cardiovascular systems. Understanding the influences of developmental defects, their origins, and clinical consequences is of paramount importance for further research and the advancement of therapeutic strategies for this condition. In recent years, groundbreaking studies in the fields of metabolomics and genomics have significantly expanded our knowledge regarding the pathogenic mechanisms of CDH. These investigations introduce novel diagnostic and therapeutic avenues. CDH implies a scarcity of available information within this domain. Consequently, a comprehensive literature review has been undertaken to synthesize existing data, providing invaluable insights into this rare disease. Improved comprehension of the molecular underpinnings of CDH has the potential to refine diagnostic precision and therapeutic interventions, thus potentially enhancing clinical outcomes for CDH patients. The identification of potential biomarkers assumes paramount significance for early disease detection and risk assessment in CDH, facilitating prompt recognition and the implementation of appropriate interventions. The process of translating research findings into clinical practice is significantly facilitated by an exhaustive literature review. It serves as a pivotal step, enabling the integration of novel, more effective diagnostic and therapeutic modalities into the management of CDH patients.
Collapse
Affiliation(s)
- Weronika Renik-Jankowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Przemysław Kosiński
- Department of Obstetrics, Perinatology, and Gynecology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091 Warszawa, Poland.
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
3
|
Bassareo PP, D’Alto M. Metabolomics in Pulmonary Hypertension-A Useful Tool to Provide Insights into the Dark Side of a Tricky Pathology. Int J Mol Sci 2023; 24:13227. [PMID: 37686034 PMCID: PMC10487467 DOI: 10.3390/ijms241713227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Pulmonary hypertension (PH) is a multifaceted illness causing clinical manifestations like dyspnea, fatigue, and cyanosis. If left untreated, it often evolves into irreversible pulmonary arterial hypertension (PAH), leading to death. Metabolomics is a laboratory technique capable of providing insights into the metabolic pathways that are responsible for a number of physiologic or pathologic events through the analysis of a biological fluid (such as blood, urine, and sputum) using proton nuclear magnetic resonance spectroscopy or mass spectrometry. A systematic review was finalized according to the PRISMA scheme, with the goal of providing an overview of the research papers released up to now on the application of metabolomics to PH/PAH. So, eighty-five papers were identified, of which twenty-four concerning PH, and sixty-one regarding PAH. We found that, from a metabolic standpoint, the hallmarks of the disease onset and progression are an increase in glycolysis and impaired mitochondrial respiration. Oxidation is exacerbated as well. Specific metabolic fingerprints allow the characterization of some of the specific PH and PAH subtypes. Overall, metabolomics provides insights into the biological processes happening in the body of a subject suffering from PH/PAH. The disarranged metabolic pathways underpinning the disease may be the target of new therapeutic agents. Metabolomics will allow investigators to make a step forward towards personalized medicine.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Mater Misercordiae University Hospital, D07 R2WY Dublin, Ireland
- Children’s Health Ireland at Crumlin, D12 N512 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michele D’Alto
- Pulmonary Hypertension Unit, Dipartimento di Cardiologia, Università della Campania “Luigi Vanvitelli”, Ospedale Monaldi, 80131 Naples, Italy;
| |
Collapse
|
4
|
Romero-Lopez M, Oria M, Ferrer-Marquez F, Varela MF, Lampe K, Watanabe-Chailland M, Martinez L, Peiro JL. Fetal lung hypoxia and energetic cell failure in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2023; 39:180. [PMID: 37055635 PMCID: PMC11439903 DOI: 10.1007/s00383-023-05452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) pathogenesis is poorly understood. We hypothesize that fetal CDH lungs are chronically hypoxic because of lung hypoplasia and tissue compression, affecting the cell bioenergetics as a possible explanation for abnormal lung development. METHODS To investigate this theory, we conducted a study using the rat nitrofen model of CDH. We evaluated the bioenergetics status using H1 Nuclear magnetic resonance and studied the expression of enzymes involved in energy production, the hypoxia-inducible factor 1α, and the glucose transporter 1. RESULTS The nitrofen-exposed lungs have increased levels of hypoxia-inducible factor 1α and the main fetal glucose transporter, more evident in the CDH lungs. We also found imbalanced AMP:ATP and ADP:ATP ratios, and a depleted energy cellular charge. Subsequent transcription levels and protein expression of the enzymes involved in bioenergetics confirm the attempt to prevent the energy collapse with the increase in lactate dehydrogenase C, pyruvate dehydrogenase kinase 1 and 2, adenosine monophosphate deaminase, AMP-activated protein kinase, calcium/calmodulin-dependent protein kinase 2, and liver kinase B1, while decreasing ATP synthase. CONCLUSION Our study suggests that changes in energy production could play a role in CDH pathogenesis. If confirmed in other animal models and humans, this could lead to the development of novel therapies targeting the mitochondria to improve outcomes.
Collapse
Affiliation(s)
- Mar Romero-Lopez
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marc Oria
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Fernando Ferrer-Marquez
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria Florencia Varela
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Leopoldo Martinez
- Servicio de Cirugía Pediátrica, Hospital la Paz, Instituto de Investigación La Paz (IdiPAZ), Madrid, Spain
| | - Jose L Peiro
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
The metabolic and lipidomic profiling of the effects of tracheal occlusion in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2023; 58:971-980. [PMID: 36801071 DOI: 10.1016/j.jpedsurg.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE Fetal tracheal occlusion (TO) reverses the pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. 'Omic' readouts capture metabolic and lipid processing function, which aid in understanding CDH and TO metabolic mechanisms. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days and lung collection at 31 days (Term ∼32 days). Lung-body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. In a cohort, left and right lungs were collected, weighed, and samples homogenized, and extracts collected for non-targeted metabolomic and lipidomic profiling via LC-MS and LC-MS/MS, respectively. RESULTS LBWR was significantly lower in CDH while CDH + TO was similar to controls (p = 0.003). MTBD was significantly higher in CDH fetuses and restored to control and sham levels in CDH + TO (p < 0.001). CDH and CDH + TO resulted in significant differences in metabolome and lipidome profiles compared to sham controls. A significant number of altered metabolites and lipids between the controls and CDH groups and the CDH and CDH + TO fetuses were identified. Significant changes in the ubiquinone and other terpenoid-quinone biosynthesis pathway and the tyrosine metabolism pathway were observed in CDH + TO. CONCLUSION CDH + TO reverses pulmonary hypoplasia in the CDH rabbit, in association with a specific metabolic and lipid signature. A synergistic untargeted 'omics' approach provides a global signature for CDH and CDH + TO, highlighting cellular mechanisms among lipids and other metabolites, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology and recovery. TYPE OF STUDY Basic Science, Prospective. LEVEL OF EVIDENCE II.
Collapse
|
6
|
Perveen S, Frigeni M, Benveniste H, Kurepa D. Cellular, molecular, and metabolic aspects of developing lungs in congenital diaphragmatic hernia. Front Pediatr 2022; 10:932463. [PMID: 36458148 PMCID: PMC9706094 DOI: 10.3389/fped.2022.932463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shahana Perveen
- Department Pediatrics, Feinstein Institute for Medical Research, New York, NY, United States.,Department of pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Department Pediatrics/Neonatal Perinatal Medicine, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - Marta Frigeni
- Department of pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | | | - Dalibor Kurepa
- Department Pediatrics/Neonatal Perinatal Medicine, Cohen Children's Medical Center, New Hyde Park, NY, United States
| |
Collapse
|
7
|
Erratum: Romero-Lopez et al. Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites 2021, 11, 177. Metabolites 2021; 11:metabo11040229. [PMID: 33918983 PMCID: PMC8070402 DOI: 10.3390/metabo11040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
|