1
|
Wang Z, Zhu H, Xiong W. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front Med 2025:10.1007/s11684-024-1116-0. [PMID: 39821730 DOI: 10.1007/s11684-024-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Wei Xiong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| |
Collapse
|
2
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
3
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024; 102:697-708. [PMID: 39186818 PMCID: PMC11663012 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
4
|
Rokop ZP, O’Connell TM, Munsch T, Nephew L, Orman E, Mihaylov P, Mangus RS, Kubal C. The rate of muscle wasting in liver transplant recipients on waiting list: post-transplant outcomes and associated serum metabolite patterns. Hepatobiliary Surg Nutr 2024; 13:962-973. [PMID: 39669082 PMCID: PMC11634410 DOI: 10.21037/hbsn-23-645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/22/2024] [Indexed: 12/14/2024]
Abstract
Background Sarcopenia at the time of liver transplantation (LT) is an established risk factor for mortality following LT. However, most studies in this context have defined sarcopenia by one-time, static measurements. The aims of this study were (I) to determine the impact of the rate of muscle loss in waitlisted LT recipients on post-LT outcomes and (II) to identify patterns of serum metabolites associated with patients with more progressive sarcopenia. Methods Patients undergoing liver transplant from 2008 to 2018 who received more than one computed tomography (CT) scans within 12 months prior to liver transplant were included (n=61). The psoas muscle index (PMI) was calculated using Slice-O-Matic software and corrected for patient height (m2). Patients were classified into two groups based the rate of reduction in PMI-high wasting [HW; change in PMI (ΔPMI) ≤-1%/month] and low wasting (LW; ΔPMI >-1%/month). Pre-transplant serum metabolic profiles were collected using nuclear magnetic resonance (NMR) spectroscopy. Living kidney donor sera was used as healthy controls. Results Median ΔPMI was -2.0%/month in HW and -0.15%/month in LW patients (P<0.001). Post-transplant 1-year mortality was significantly higher in HW patients. There were no significant differences in metabolite concentrations between HW and LW patients. However, perturbations in taurine, sarcosine, betaine and the aromatic amino acids (AAAs), were observed in patients with liver disease as compared to healthy controls. Liver disease was also associated with a decrease in lipoprotein profiles, especially high-density lipoprotein (HDL) particles. Conclusions In patients undergoing LT, the rate of progression of sarcopenia is a strong prognostic indicator of post-LT death. Serum metabolite profiles were not characteristically unique to HW patients, and most closely resemble derangements associated with chronic liver disease.
Collapse
Affiliation(s)
- Zachary P. Rokop
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M. O’Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Munsch
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lauren Nephew
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Orman
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard S. Mangus
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandrashekhar Kubal
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
6
|
Hua C, Chen Y, Sun Z, Shi Z, Song Q, Shen L, Lu W, Wang Z, Zang J. Associations of serum arginine acid with sarcopenia in Chinese eldely women. Nutr Metab (Lond) 2024; 21:63. [PMID: 39118134 PMCID: PMC11308234 DOI: 10.1186/s12986-024-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The prevalence of sarcopenia is increasing in worldwide with accelerated aging process. The high dietary protein intakes are associated with improved muscle mass and strength especially in Asian countries. However, there are few researches on amino acid levels or mechanism exploration. We conducted a case-control study to explore the amino acid metabolic characteristics and potential mechanism of elderly women with sarcopenia using targeted amino acid metabolomics approach combined with an analysis of dietary intake. METHODS For our case-control study, we recruited women (65-75 y) from a Shanghai community with 50 patients with sarcopenia and 50 healthy controls. The consensus updated by the Asian Working Group on Sarcopenia in 2019 was used to screening for sarcopenia and control groups. We collected fasting blood samples and evaluated dietary intake. We used the amino acid-targeted metabolomics by ultra performance liquid chromatography tandem mass spectrometry to identify metabolic differentials between the case and control groups and significantly enriched metabolic pathways. RESULTS The case (sarcopenia) group had a lower intake of energy, protein, and high-quality protein (P < 0.05) compared to the control (healthy) group. We identified four differential amino acids: arginine (P < 0.001) and cystine (P = 0.003) were lower, and taurine (P = 0.001) were higher in the case group. CONCLUSION Low levels of arginine in elderly women are associated with a higher risk of sarcopenia.
Collapse
Affiliation(s)
- Chao Hua
- Department of Clinical Nutrition, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuhua Chen
- Department of Clinical Nutrition, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhuo Sun
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zehuan Shi
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Qi Song
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Liping Shen
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Wei Lu
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zhengyuan Wang
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Jiajie Zang
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| |
Collapse
|
7
|
Lu Y, Cai X, Shi B, Gong H. Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization. Front Microbiol 2024; 15:1433892. [PMID: 39077745 PMCID: PMC11284117 DOI: 10.3389/fmicb.2024.1433892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Osteoporosis, characterized by reduced bone density and heightened fracture risk, is influenced by genetic and environmental factors. This study investigates the interplay between gut microbiota, plasma metabolomics, and osteoporosis, identifying potential causal relationships mediated by plasma metabolites. Methods Utilizing aggregated genome-wide association studies (GWAS) data, a comprehensive two-sample Mendelian Randomization (MR) analysis was performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and osteoporosis indicators. Causal relationships between gut microbiota, plasma metabolites, and osteoporosis were explored. Results The MR analyses revealed ten gut microbiota taxa associated with osteoporosis, with five taxa positively linked to increased risk and five negatively associated. Additionally, 96 plasma metabolites exhibited potential causal relationships with osteoporosis, with 49 showing positive associations and 47 displaying negative associations. Mediation analyses identified six causal pathways connecting gut microbiota to osteoporosis through ten mediating relationships involving seven distinct plasma metabolites, two of which demonstrated suppression effects. Conclusion This study provides suggestive evidence of genetic correlations and causal links between gut microbiota, plasma metabolites, and osteoporosis. The findings underscore the complex, multifactorial nature of osteoporosis and suggest the potential of gut microbiota and plasma metabolite profiles as biomarkers or therapeutic targets in the management of osteoporosis.
Collapse
|
8
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|
9
|
Zhou M, An YZ, Guo Q, Zhou HY, Luo XH. Energy homeostasis in the bone. Trends Endocrinol Metab 2024; 35:439-451. [PMID: 38242815 DOI: 10.1016/j.tem.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.
Collapse
Affiliation(s)
- Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| |
Collapse
|
10
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024:AD.2024.0407. [PMID: 38739945 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
|
11
|
Zhu XX, Yao KF, Huang HY, Wang LH. Associations between Geriatric Nutrition Risk Index, bone mineral density and body composition in type 2 diabetes patients. World J Diabetes 2024; 15:403-417. [PMID: 38591073 PMCID: PMC10999046 DOI: 10.4239/wjd.v15.i3.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 01/24/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), a fast-growing issue in public health, is one of the most common chronic metabolic disorders in older individuals. Osteoporosis and sarcopenia are highly prevalent in T2DM patients and may result in fractures and disabilities. In people with T2DM, the association between nutrition, sarcopenia, and osteoporosis has rarely been explored. AIM To evaluate the connections among nutrition, bone mineral density (BMD) and body composition in patients with T2DM. METHODS We enrolled 689 patients with T2DM for this cross-sectional study. All patients underwent dual energy X-ray absorptiometry (DXA) examination and were categorized according to baseline Geriatric Nutritional Risk Index (GNRI) values calculated from serum albumin levels and body weight. The GNRI was used to evaluate nutritional status, and DXA was used to investigate BMD and body composition. Multivariate forward linear regression analysis was used to identify the factors associated with BMD and skeletal muscle mass index. RESULTS Of the total patients, 394 were men and 295 were women. Compared with patients in tertile 1, those in tertile 3 who had a high GNRI tended to be younger and had lower HbA1c, higher BMD at all bone sites, and higher appendicular skeletal muscle index (ASMI). These important trends persisted even when the patients were divided into younger and older subgroups. The GNRI was positively related to ASMI (men: r = 0.644, P < 0.001; women: r = 0.649, P < 0.001), total body fat (men: r = 0.453, P < 0.001; women: r = 0.557, P < 0.001), BMD at all bone sites, lumbar spine (L1-L4) BMD (men: r = 0.110, P = 0.029; women: r = 0.256, P < 0.001), FN-BMD (men: r = 0.293, P < 0.001; women: r = 0.273, P < 0.001), and hip BMD (men: r = 0.358, P < 0.001; women: r = 0.377, P < 0.001). After adjustment for other clinical parameters, the GNRI was still significantly associated with BMD at the lumbar spine and femoral neck. Additionally, a low lean mass index and higher β-collagen special sequence were associated with low BMD at all bone sites. Age was negatively correlated with ASMI, whereas weight was positively correlated with ASMI. CONCLUSION Poor nutrition, as indicated by a low GNRI, was associated with low levels of ASMI and BMD at all bone sites in T2DM patients. Using the GNRI to evaluate nutritional status and using DXA to investigate body composition in patients with T2DM is of value in assessing bone health and physical performance.
Collapse
Affiliation(s)
- Xiao-Xiao Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, First People’s Hospital of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Kai-Feng Yao
- Department of Nursing, The Second Affiliated Hospital of Nantong University, First People’s Hospital of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Hai-Yan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, First People’s Hospital of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Li-Hua Wang
- Department of Nursing, The Second Affiliated Hospital of Nantong University, First People’s Hospital of Nantong City, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
12
|
Liu D, Ma L, Zheng J, Zhang Z, Zhang N, Han Z, Wang X, Zhao J, Lv S, Cui H. Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation. Curr Drug Metab 2024; 25:288-297. [PMID: 39005121 DOI: 10.2174/0113892002308141240628071541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.
Collapse
Affiliation(s)
- Defeng Liu
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Lingyun Ma
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jihui Zheng
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhenqun Zhang
- Department of Endocrinology, Hebei University of Chinese Medicine,Cangzhou, China
| | - Nana Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhongqian Han
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Xuejie Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jianyong Zhao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Huantian Cui
- Faculty of Life Sciences, Yunnan University of Chinese Medicine,Kunming, China
| |
Collapse
|
13
|
Li Y, Si Y, Ma Y, Yin H. Application and prospect of metabolomics in the early diagnosis of osteoporosis: a narrative review. Bioanalysis 2023; 15:1369-1379. [PMID: 37695026 DOI: 10.4155/bio-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
This paper reviews the application of metabolomics in the early diagnosis of osteoporosis in recent years. The authors searched electronic databases for the keywords "metabolomics", "osteoporosis" and "biomarkers", then analyzed the relationship between functional markers and osteoporosis using categorical summarization. Lipid metabolism, amino acid metabolism and energy metabolism are closely related to osteoporosis development and can become early diagnostic markers of the condition. However, the existing studies in metabolomics suffer from varying application methods, difficulty in identifying isomers, small study cohorts and insufficient research on metabolic mechanisms. Consequently, it is important for future research to focus on broadening and standardizing the scope of the application of metabolomics. High-quality studies on a large scale should also be conducted while promoting the early diagnosis of osteoporosis in a more precise, comprehensive and sensitive manner.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yuhao Si
- School of Acupuncture-Moxibustion & Tuina, School of Regimen & Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
- Laboratory for New Techniques of Restoration & Reconstruction of Orthopedics & Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Yong Ma
- Laboratory for New Techniques of Restoration & Reconstruction of Orthopedics & Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Heng Yin
- Department of Traumatology & Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, 214071, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, 214071, China
| |
Collapse
|
14
|
Yang J, Wu J. Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies. Expert Rev Mol Diagn 2023:1-16. [PMID: 37140363 DOI: 10.1080/14737159.2023.2208750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Global aging has made osteoporosis an increasingly serious public health problem. Osteoporotic fractures seriously affect the quality of life of patients and increase disability and mortality rates. Early diagnosis is important for timely intervention. The continuous development of individual- and multi-omics methods is helpful for the exploration and discovery of biomarkers for the diagnosis of osteoporosis. AREAS COVERED In this review, we first introduce the epidemiological status of osteoporosis and then describe the pathogenesis of osteoporosis. Furthermore, the latest progress in individual- and multi-omics technologies for exploring biomarkers for osteoporosis diagnosis is summarized. Moreover, we clarify the advantages and disadvantages of the application of osteoporosis biomarkers obtained using the omics method. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of osteoporosis. EXPERT OPINION Omics methods undoubtedly provide greatly contribute to the exploration of diagnostic biomarkers of osteoporosis; however, in the future, the clinical validity and clinical utility of the obtained potential biomarkers should be thoroughly examined. In addition, the improvement and optimization of the detection methods for different types of biomarkers and standardization of the detection process guarantee the reliability and accuracy of the detection results.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
15
|
Lau KT, Krishnamoorthy S, Sing CW, Cheung CL. Metabolomics of Osteoporosis in Humans: A Systematic Review. Curr Osteoporos Rep 2023; 21:278-288. [PMID: 37060383 DOI: 10.1007/s11914-023-00785-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW To systematically review recent studies investigating the association between metabolites and bone mineral density (BMD) in humans. METHODS Using predefined keywords, we searched literature published from Jan 1, 2019 to Feb 20, 2022 in PubMed, Web of Science, Embase, and Scopus. Studies that met the predefined exclusion criteria were excluded. Among the included studies, we identified metabolites that were reported to be associated with BMD by at least three independent studies. RECENT FINDINGS A total of 170 studies were retrieved from the databases. After excluding studies that did not meet our predefined inclusion criteria, 16 articles were used in this review. More than 400 unique metabolites in blood were shown to be significantly associated with BMD. Of these, three metabolites were reported by ≥ 3 studies, namely valine, leucine and glycine. Glycine was consistently shown to be inversely associated with BMD, while valine was consistently observed to be positively associated with BMD. Inconsistent associations with BMD was observed for leucine. With advances in metabolomics technology, an increasing number of metabolites associated with BMD have been identified. Two of these metabolites, namely valine and glycine, were consistently associated with BMD, highlighting their potential for clinical application in osteoporosis. International collaboration with a larger population to conduct clinical studies on these metabolites is warranted. On the other hand, given that metabolomics could be affected by genetics and environmental factors, whether the inconsistent association of the metabolites with BMD is due to the interaction between metabolites and genes and/or lifestyle warrants further study.
Collapse
Affiliation(s)
- Kat-Tik Lau
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Suhas Krishnamoorthy
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Chor-Wing Sing
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ching Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong.
| |
Collapse
|
16
|
Hata R, Miyamoto K, Abe Y, Sasaki T, Oguma Y, Tajima T, Arai Y, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Osteoporosis and sarcopenia are associated with each other and reduced IGF1 levels are a risk for both diseases in the very old elderly. Bone 2023; 166:116570. [PMID: 36182103 DOI: 10.1016/j.bone.2022.116570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022]
Abstract
It is mandatory to manage musculoskeletal disorders in the elderly to prevent their becoming bed-ridden or requiring long-term care. However, the prevalence of musculoskeletal disorders such as osteoporosis and sarcopenia in otherwise healthy people over 85 years old is not completely known. Here we enrolled 1026 healthy subjects between 85 and 89 years old and evaluated them for the presence of osteoporosis, sarcopenia and fragility fracture(s), and how those conditions were related. We also evaluated biomarkers such as serum levels of insulin-like growth factor 1 (IGF1) and vitamin D status. The prevalence of osteoporosis, sarcopenia or fragility fracture(s) in these subjects was 22.4, 10.2 or 15.0 %, respectively. Serum IGF1 and 25(OH)D were significantly and negatively correlated with osteoporosis or sarcopenia. Osteoporosis and either sarcopenia or fragility fracture(s) were significantly related and shown to be risk factors for each other, even after adjustment for gender and BMI, while sarcopenia and fragility fracture(s) were not associated. Our data may provide a health platform for the very elderly and suggest strategies to prevent musculoskeletal disorders in this population.
Collapse
Affiliation(s)
- Ryosuke Hata
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yukiko Abe
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuko Oguma
- Sports Medicine Research Center, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061, Japan; Graduate School of Health Management, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061, Japan
| | - Takayuki Tajima
- Sports Medicine Research Center, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061, Japan; Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yasumichi Arai
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Faculty of Nursing and Medical Care, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| |
Collapse
|
17
|
Bosman P, Pichon V, Acevedo AC, Le Pottier L, Pers JO, Chardin H, Combès A. Untargeted Metabolomic Approach to Study the Impact of Aging on Salivary Metabolome in Women. Metabolites 2022; 12:986. [PMID: 36295888 PMCID: PMC9612358 DOI: 10.3390/metabo12100986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 08/29/2023] Open
Abstract
Despite the growing interest in salivary metabolomics, few studies have investigated the impact of aging on the salivary metabolome. The alterations in metabolic pathways that occur with aging are likely to be observed in pathologies affecting older people and may interfere with the search for salivary biomarkers. It is therefore important to investigate the age-related changes occurring in the salivary metabolome. Using reversed phase liquid chromatography and hydrophilic interaction chromatography coupled to mass spectrometry used in positive and negative ionization modes, the salivary metabolic profiles of young (22 to 45 years old) and older people (55 to 92 years old) were obtained. Those profiles were compared with the use of XCMS online to highlight the under or overexpression of some metabolites with aging. A total of 60 metabolites showed differential expression with age. The identification of 26 of them was proposed by the METLIN database and, among them, 17 were validated by standard injections. Aging seemed to affect most of the main metabolic pathways (amino acid metabolism, Krebs cycle, fatty acid synthesis, and nucleic acid synthesis). Moreover, most of the metabolites that were over- or under-expressed with age in this study have already been identified as being potential biomarkers of diseases affecting older people, such as in Alzheimer's disease. Special attention should be paid in the search for biomarkers of pathologies affecting the elderly to differentiate age-related changes from disease-related changes.
Collapse
Affiliation(s)
- Pauline Bosman
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, UMR 8231 CBI CNRS, ESPCI Paris, PSL Université, 75005 Paris, France
| | - Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, UMR 8231 CBI CNRS, ESPCI Paris, PSL Université, 75005 Paris, France
- Sorbonne Université, 75006 Paris, France
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasília DF CEP 70910-900, Brazil
- Université Paris Cité, 75006 Paris, France
| | | | - Jacques Olivier Pers
- LBAI, UMR 1227, Université de Brest, Inserm, 29200 Brest, France
- University Hospital of Brest, 29200 Brest, France
| | - Hélène Chardin
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, UMR 8231 CBI CNRS, ESPCI Paris, PSL Université, 75005 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, UMR 8231 CBI CNRS, ESPCI Paris, PSL Université, 75005 Paris, France
| |
Collapse
|
18
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
19
|
Zhao Z, Cai Z, Chen A, Cai M, Yang K. Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne) 2022; 13:993253. [PMID: 36452325 PMCID: PMC9702081 DOI: 10.3389/fendo.2022.993253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease characterized by bone metabolism imbalance and bone microstructure destruction, which causes serious social and economic burden. At present, the diagnosis and treatment of OP mainly rely on imaging combined with drugs. However, the existing pathogenic mechanisms, diagnosis and treatment strategies for OP are not clear and effective enough, and the disease progression that cannot reflect OP further restricts its effective treatment. The application of metabolomics has facilitated the study of OP, further exploring the mechanism and behavior of bone cells, prevention, and treatment of the disease from various metabolic perspectives, finally realizing the possibility of a holistic approach. In this review, we focus on the application of metabolomics in OP research, especially the newer systematic application of metabolomics and treatment with herbal medicine and their extracts. In addition, the prospects of clinical transformation in related fields are also discussed. The aim of this study is to highlight the use of metabolomics in OP research, especially in exploring the pathogenesis of OP and the therapeutic mechanisms of natural herbal medicine, for the benefit of interdisciplinary researchers including clinicians, biologists, and materials engineers.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
20
|
Umezu T, Nakamura S, Sato Y, Kobayashi T, Ito E, Abe T, Kaneko M, Nomura M, Yoshimura A, Oya A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Smad2 and Smad3 expressed in skeletal muscle promote immobilization-induced bone atrophy in mice. Biochem Biophys Res Commun 2021; 582:111-117. [PMID: 34710825 DOI: 10.1016/j.bbrc.2021.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Skeletal muscle is known to regulate bone homeostasis through muscle-bone interaction, although factors that control this activity remain unclear. Here, we newly established Smad3-flox mice, and then generated skeletal muscle-specific Smad2/Smad3 double conditional knockout mice (DcKO) by crossing Smad3-flox with skeletal muscle-specific Ckmm Cre and Smad2-flox mice. We show that immobilization-induced gastrocnemius muscle atrophy occurring due to sciatic nerve denervation was partially but significantly inhibited in DcKO mice, suggesting that skeletal muscle cell-intrinsic Smad2/3 is required for immobilization-induced muscle atrophy. Also, tibial bone atrophy seen after sciatic nerve denervation was partially but significantly inhibited in DcKO mice. Bone formation rate in wild-type mouse tibia was significantly inhibited by immobilization, but inhibition was abrogated in DcKO mice. We propose that skeletal muscle regulates immobilization-induced bone atrophy via Smad2/3, and Smad2/3 represent potential therapeutic targets to prevent both immobilization-induced bone and muscle atrophy.
Collapse
Affiliation(s)
- Taro Umezu
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Orthopedic Surgery, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba, 286-8520, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi Ward, Fukuoka, 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|