1
|
Robinson JM, Annells A, Cando-Dumancela C, Breed MF. Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity. Biol Lett 2024; 20:20240295. [PMID: 39353567 PMCID: PMC11444772 DOI: 10.1098/rsbl.2024.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Amy Annells
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christian Cando-Dumancela
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
2
|
Dietert RR, Dietert JM. Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies. Microorganisms 2024; 12:905. [PMID: 38792734 PMCID: PMC11123986 DOI: 10.3390/microorganisms12050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The vast array of interconnected microorganisms across Earth's ecosystems and within holobionts has been called the "Internet of Microbes." Bacteria and archaea are masters of energy and information collection, storage, transformation, and dissemination using both "wired" and wireless (at a distance) functions. Specific tools affecting microbial energy and information functions offer effective strategies for managing microbial populations within, between, and beyond holobionts. This narrative review focuses on microbial management using a subset of physical modifiers of microbes: sound and light (as well as related vibrations). These are examined as follows: (1) as tools for managing microbial populations, (2) as tools to support new technologies, (3) as tools for healing humans and other holobionts, and (4) as potential safety dangers for microbial populations and their holobionts. Given microbial sensitivity to sound, light, and vibrations, it is critical that we assign a higher priority to the effects of these physical factors on microbial populations and microbe-laden holobionts. We conclude that specific sound, light, and/or vibrational conditions are significant therapeutic tools that can help support useful microbial populations and help to address the ongoing challenges of holobiont disease. We also caution that inappropriate sound, light, and/or vibration exposure can represent significant hazards that require greater recognition.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
3
|
Vinayavekhin N, Wattanophas T, Murphy MF, Vangnai AS, Hobbs G. Metabolomics responses and tolerance of Pseudomonas aeruginosa under acoustic vibration stress. PLoS One 2024; 19:e0297030. [PMID: 38285708 PMCID: PMC10824448 DOI: 10.1371/journal.pone.0297030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024] Open
Abstract
Sound has been shown to impact microbial behaviors. However, our understanding of the chemical and molecular mechanisms underlying these microbial responses to acoustic vibration is limited. In this study, we used untargeted metabolomics analysis to investigate the effects of 100-Hz acoustic vibration on the intra- and extracellular hydrophobic metabolites of P. aeruginosa PAO1. Our findings revealed increased levels of fatty acids and their derivatives, quinolones, and N-acylethanolamines upon sound exposure, while rhamnolipids (RLs) showed decreased levels. Further quantitative real-time polymerase chain reaction experiments showed slight downregulation of the rhlA gene (1.3-fold) and upregulation of fabY (1.5-fold), fadE (1.7-fold), and pqsA (1.4-fold) genes, which are associated with RL, fatty acid, and quinolone biosynthesis. However, no alterations in the genes related to the rpoS regulators or quorum-sensing networks were observed. Supplementing sodium oleate to P. aeruginosa cultures to simulate the effects of sound resulted in increased tolerance of P. aeruginosa in the presence of sound at 48 h, suggesting a potential novel response-tolerance correlation. In contrast, adding RL, which went against the response direction, did not affect its growth. Overall, these findings provide potential implications for the control and manipulation of virulence and bacterial characteristics for medical and industrial applications.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanyaporn Wattanophas
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mark Francis Murphy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alisa S. Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Glyn Hobbs
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
4
|
Wu L, Yang N, Guo M, Zhang D, Ghiladi RA, Bayram H, Wang J. The role of sound stimulation in production of plant secondary metabolites. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:40. [PMID: 37847483 PMCID: PMC10581969 DOI: 10.1007/s13659-023-00409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Sound vibration is one of natural stimuli trigging physiological changes in plants. Recent studies showed that sound waves stimulated production of a variety of plant secondary metabolites, including flavonoids, in order to enhance seed germination, flowering, growth or defense. In this review, we examine the potential role of sound stimulation on the biosynthesis of secondary metabolites and the followed cascade of physiological changes in plants, from the perspective of transcriptional regulation and epigenetic regulation for the first time. A systematic summary showed that a wide range of factors may regulate the production of secondary metabolites, including plant species, growth stage, sound types, sound frequency, sound intensity level and exposure time, etc. Biochemical and physiological changes due to sound stimulation were thoroughly summarized as well, for secondary metabolites can also act as a free radical scavenger, or a hormone signaling molecule. We also discussed the limits of previous studies, and the future application of sound waves in biosynthesis of plant secondary metabolites.
Collapse
Affiliation(s)
- Li Wu
- Department of Music, South-Central Minzu University, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Meng Guo
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
| | - Didi Zhang
- Department of Music, South-Central Minzu University, Wuhan, Hubei, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Hasan Bayram
- Department of Pulmonary Medicine, Koç University Hospital, Koç University, Istanbul, Turkey
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Loughrin JH, Parekh RR, Agga GE, Silva PJ, Sistani KR. Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound. Microorganisms 2023; 11:2349. [PMID: 37764193 PMCID: PMC10535533 DOI: 10.3390/microorganisms11092349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L-1 digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth.
Collapse
Affiliation(s)
- John H. Loughrin
- United States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USA; (R.R.P.); (G.E.A.); (P.J.S.); (K.R.S.)
| | | | | | | | | |
Collapse
|
6
|
Direct liquid transmission of sound has little impact on fermentation performance in Saccharomyces cerevisiae. PLoS One 2023; 18:e0281762. [PMID: 36800360 PMCID: PMC9937469 DOI: 10.1371/journal.pone.0281762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Sound is a physical stimulus that has the potential to affect various growth parameters of microorganisms. However, the effects of audible sound on microbes reported in the literature are inconsistent. Most published studies involve transmitting sound from external speakers through air toward liquid cultures of the microorganisms. However, the density differential between air and liquid culture could greatly alter the sound characteristics to which the microorganisms are exposed. In this study we apply white noise sound in a highly controlled experimental system that we previously established for transmitting sound underwater directly into liquid cultures to examine the effects of two key sound parameters, frequency and intensity, on the fermentation performance of a commercial Saccharomyces cerevisiae ale yeast growing in a maltose minimal medium. We performed these experiments in an anechoic chamber to minimise extraneous sound, and find little consistent effect of either sound frequency or intensity on the growth rate, maltose consumption, or ethanol production of this yeast strain. These results, while in contrast to those reported in most published studies, are consistent with our previous study showing that direct underwater exposure to white noise sound has little impact on S. cerevisiae volatile production and sugar utilization in beer medium. Thus, our results suggest the possibility that reported microorganism responses to sound may be an artefact associated with applying sound to cultures externally via transmission through air.
Collapse
|
7
|
The Effect of Sound Frequency and Intensity on Yeast Growth, Fermentation Performance and Volatile Composition of Beer. Molecules 2021; 26:molecules26237239. [PMID: 34885824 PMCID: PMC8658799 DOI: 10.3390/molecules26237239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the impact of varying sound conditions (frequency and intensity) on yeast growth, fermentation performance and production of volatile organic compounds (VOCs) in beer. Fermentations were carried out in plastic bags suspended in large water-filled containers fitted with underwater speakers. Ferments were subjected to either 200-800 or 800-2000 Hz at 124 and 140 dB @ 20 µPa. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to identify and measure the relative abundance of the VOCs produced. Sound treatment had significant effects on the number of viable yeast cells in suspension at 10 and 24 h (p < 0.05), with control (silence) samples having the highest cell numbers. For wort gravity, there were significant differences between treatments at 24 and 48 h, with the silence control showing the lowest density before all ferments converged to the same final gravity at 140 h. A total of 33 VOCs were identified in the beer samples, including twelve esters, nine alcohols, three acids, three aldehydes, and six hop-derived compounds. Only the abundance of some alcohols showed any consistent response to the sound treatments. These results show that the application of audible sound via underwater transmission to a beer fermentation elicited limited changes to wort gravity and VOCs during fermentation.
Collapse
|