1
|
Xiao Y, Chen H, Chen Y, Ho CT, Wang Y, Cai T, Li S, Ma J, Guo T, Zhang L, Liu Z. Effect of inoculation with different Eurotium cristatum strains on the microbial communities and volatile organic compounds of Fu brick tea. Food Res Int 2024; 197:115219. [PMID: 39593304 DOI: 10.1016/j.foodres.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Eurotium cristatum is the primary fungus in Fu brick tea (FBT) and plays a crucial role in its special flavor. This study investigated the effect of inoculation with different E. cristatum strains (i.e., ZJ, GX, GZ, HN, and SX) on the microbial communities and volatile organic compounds (VOCs) of FBT. A total of 113 VOCs were identified in all samples, with the concentration of VOCs (alcohols, aldehydes, and ketones) significantly higher in GXE FBT than in other samples. The core VOCs of GXE (19), GZE (16), HNE (19), SXE (15), and ZJE (13) FBT were identified using orthogonal partial least squares discriminant analysis and relative odor activity value (ROAV) analysis. Methional (a27), butanal (a41), 1-octen-3-one (a69), and ethyl acetate (a77) were key markers for inoculated FBTs, and 1-octen-3-ol, dimethyl disulfide, and acetoin-M were the specific markers of HNE. Linalool and (E)-2-octenal were particularly prominent in GXE, and isoamyl acetate-D was an important aroma component of GZE. Differences in microbial diversity were observed among the different inoculated fermented FBTs, and E. cristatum inoculation remarkably influenced the richness and diversity of bacterial communities. The VOCs were closely associated with fungi and bacteria, and 19 potentially dominant microorganisms (10 fungal and 9 bacterial genera) correlated with VOCs were identified. Among them, Aspergillus (fungi) and Pseudomonas (bacteria) exerted the greatest role. The FBT inoculated with E. cristatum from ZJ had the highest content of theaflavins and theabrownins, which intensified the red and yellow colors of the tea. E. cristatum greatly decreased the free amino acids and fatty acids, contributing to the aroma formation of FBT. Therefore, inoculating FBT with E. cristatum remarkably influenced the microbial communities and improved its flavor profile. This work provides a theoretical foundation on the role of E. cristatum in the formation and regulation of FBT flavor.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Shi Li
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinrong Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianyang Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Liu R, Wu B, Zhang T, Zheng J, Sun Y. Fu brick tea polysaccharides: A state-of-the-art mini-review on extraction, purification, characteristics, bioactivities and applications. Int J Biol Macromol 2024; 280:136135. [PMID: 39349078 DOI: 10.1016/j.ijbiomac.2024.136135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Fu brick tea (FBT), a post-fermented dark tea, is highly esteemed for its abundant nutritional and medicinal values. Fu brick polysaccharides (FBTPs) are acidic heteropolysaccharides primarily composed of galactose and galacturonic acid, which are crucial components of FBT. FBTPs exhibit multiple bioactivities, including immunomodulatory, antioxidant, anti-inflammatory, regulatory effects on intestinal microbiota, anti-obesity, among others. Owing to their significant marketing potential and promising development prospects, FBTPs have attracted considerable attention from researchers worldwide. However, the specific mechanisms and underlying structure-function relationships of FBTPs are not well understood. Consequently, this review aims to provide comprehensive and cutting-edge information on the extraction, purification, structural characteristics, and biological activities of FBTPs, with an emphasis on exploring how their structural characteristics influence biological activities and therapeutic potential. We found that different materials and extraction techniques could result in differences in the structure-activity relationship of FBTPs. Furthermore, monosaccharide composition and molecular weight could also significantly impact the bioactivities of FBTPs, such as lipid-lowering effects and immunomodulatory activity. This review would further facilitate the applications of FBTPs as therapeutic agents and functional foods, thereby laying a solid foundation for their further development and utilization.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Bolin Wu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China.
| |
Collapse
|
3
|
Wang A, Lei Q, Zhang B, Wu J, Fu Z, He J, Wang Y, Wu X. Revealing novel insights into the enhancement of quality in black tea processing through microbial intervention. Food Chem X 2024; 23:101743. [PMID: 39257489 PMCID: PMC11386051 DOI: 10.1016/j.fochx.2024.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Black tea is highly favored by consumers worldwide, with enzymatic reactions being recognized as a pivotal factor influencing tea quality. The role of microorganisms in shaping the composition of black tea has emerged as a focus of research due to their involvement in enzyme catalysis and metabolic processes. In this study, full-length amplicon sequencing combined with qPCR more accurately reflected microbial profile, and Pantoea, Pseudomonas, Paucibacter, and Cladosporium were identified as the main microbial genera. Moreover, by comprehensively analyzing color, aroma, and taste components over time in black tea samples, correlations were established between the dominant genus and various quality factors. Notably, peroxidase activity levels, total soluble sugar content, and tea pigments concentration exhibited significant associations with the dominant genus. Consequently, this microbiological perspective facilitated the exploration of driving factors for improving black tea quality while establishing a theoretical foundation for quality control in industrial production.
Collapse
Affiliation(s)
- Ailing Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Qingqing Lei
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Beibei Zhang
- Guizhou Guitianxia Shengxing Tea Industry Co., LTD, Zunyi, Guizhou 563000, China
| | - Junhai Wu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Zheyang Fu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Jiangfeng He
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yanbo Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Xinying Wu
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| |
Collapse
|
4
|
Zhang J, Xin W, Zou Y, Yan J, Tang W, Ji Y, Li W. Dynamic changes and correlation analysis of microorganisms and flavonoids/ amino acids during white tea storage. Food Chem 2024; 455:139932. [PMID: 38843719 DOI: 10.1016/j.foodchem.2024.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.
Collapse
Affiliation(s)
- Jianming Zhang
- Research Management Service, Wuyi University, Wuyishan 354300, China
| | - Wei Xin
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenxin Tang
- Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Liu S, Zhao L, Li M, Zhu Y, Liang D, Ma Y, Sun L, Zhao G, Tu Q. Probiotic Bacillus as fermentation agents: Status, potential insights, and future perspectives. Food Chem X 2024; 22:101465. [PMID: 38798797 PMCID: PMC11127159 DOI: 10.1016/j.fochx.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Probiotic Bacillus strains can solve the problems of single flavor and long fermentation time of fermented products caused by the lack of certain functional genes and insufficient metabolism ability of fermenter strains (Lactobacillus and Bifidobacterium) at the present stage. There is a lack of systematic evaluation and review of probiotic Bacillus as food fermentation agents. In this paper, it is observed that probiotic Bacillus strains are involved to varying degrees in liquid-state, semi-solid state, and solid-state fermentation and are widely present in solid-state fermented foods. Probiotic Bacillus strains not only produce abundant proteases and lipases, but also effective antifungal lipopeptides and extracellular polymers, thus enhancing the flavor, nutritional value and safety of fermented foods. Bacillus with probiotic qualities is an underutilized group of probiotic food fermentation agents, which give a potential for the development of fermentation technology in the food business and the integration of ancient traditional fermentation techniques.
Collapse
Affiliation(s)
- Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - LingXia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
6
|
Huang X, Li Y, Zhou F, Xiao T, Shang B, Niu L, Huang J, Liu Z, Wang K, Zhu M. Insight into the chemical compositions of Anhua dark teas derived from identical tea materials: A multi-omics, electronic sensory, and microbial sequencing analysis. Food Chem 2024; 441:138367. [PMID: 38199099 DOI: 10.1016/j.foodchem.2024.138367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Anhua dark teas (DTs), including Tianjian tea, Qianliang tea, Hei brick tea, and Fu brick tea, are unique fermented teas from China's Anhua County; yet their chemical composition differences remain unclear. Herein, metabolomics, volatolomics, and electronic sensory assessments were employed to analyze and compare chemical compositions and sensory characteristics of five types of Anhua DTs. All of these teas were derived from identical tea materials. Chemical compositions differed significantly among Anhua DTs, with Tianjian tea remarkable. Long-lasting fermentation and complex processing methods led to transformation of multiple compounds, particularly catechins. Eighteen volatile compounds with OVA > 1 were key aroma contributors in Anhua DTs. Internal transcribed spacer and 16S ribosomal DNA sequencing showed that Eurotium, Pseudomonas, and Bacillus are dominant microorganisms in Anhua DTs. Furthermore, this study unveiled notable differences in chemical compositions between Anhua DTs and five other traditional types of tea. This research enhances our understanding of Anhua DTs processing.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Fang Zhou
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China.
| | - Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Bohao Shang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Li Niu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Pan J, Wang J, Teng J, Huang L, Wei B, Xia N, Zhu P. Deciphering the underlying core microorganisms and the marker compounds of Liupao tea during the pile-fermentation process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2862-2875. [PMID: 38017631 DOI: 10.1002/jsfa.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Pile fermentation is one of the key steps in developing the Liupao tea (LBT) quality and unique characteristics. The complex biochemical profile of LBT results from microorganisms present during the pile-fermentation process. However, the critical underlying microorganisms and the marker compounds still need to be determined. RESULTS Staphylococcus, Brevibacterium, Kocuria, Aspergillus, and Blastobotrys were the common dominant microorganisms at the end of the pile fermentation of LBT. Staphylococcus, Aspergillus, Blastobotrys, and nine other genera carried by raw tea are the core microorganisms in the LBT during pile fermentation. A total of 29 critical compounds contributed to the metabolic changes caused by the processing of LBT. Of these, gallic acid, adenine, hypoxanthine, uridine, betaine, 3,4-dihydroxybenzaldehyde, and α-linolenic acid could be characterized as potential marker compounds. Correlation analysis showed that the core microorganisms, including Sphingomonas, Staphylococcus, Kocuria, Aureobasidium, Blastobotrys, Debaryomyce, and Trichomonascus, were closely related to major chemical components and differential compounds. Moreover, the mutually promoting Staphylococcus, Kocuria, Blastobotrys, and Trichomonascus were correlated with the enrichment of marker compounds. Integrated molecular networking and metabolic pathways revealed relevant compounds and enzymes that possibly affect the enrichment of marker compounds. CONCLUSION This study analyzed the LBT fermentation samples by omics analysis to reveal the stable microbial community structure, critical microorganisms, and markers compounds affecting the quality of LBT, which contributes to a better understanding of pile fermentation of LBT and the fermentation theory of dark tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jincen Pan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jie Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Li H, Dai W, Zhang X, Lu J, Song F, Li H. Chemical components of Fu brick tea and its potential preventive effects on metabolic syndrome. Food Sci Nutr 2024; 12:35-47. [PMID: 38268870 PMCID: PMC10804099 DOI: 10.1002/fsn3.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
As living standards advance, an escalating emphasis is placed on health, particularly in relation to prevalent chronic metabolic disorders. It is necessary to explore safe and effective functional foods or drugs. Fu brick tea (FBT) is a kind of dark tea fermented by fungi. The extracts are rich in compounds that can effectively relieve metabolic diseases such as hyperglycemia and hyperlipidemia, protect the liver, improve human immunity, enhance antioxidant activity, and regulate intestinal flora. This paper summarizes the biological activities and mechanisms of the extracts, polysaccharides, and small molecular compounds of FBT, which provides a certain theoretical basis for the rational, systematic, comprehensive development and utilization of the FBT resources. It is expected to develop and apply these active substances in health care products and natural medicines and provide more beneficial and diversified FBT products for human beings.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Wei Dai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Xinjun Zhang
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Jie Lu
- Key Laboratory of Forest Ecology in Tibet Plateau (Ministry of Education), Institute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiTibetChina
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| | - Hua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of ChinaSchool of Light IndustryBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
9
|
Le MM, Zhong LW, Ren ZW, An MQ, Long YH, Ling TJ. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19142-19153. [PMID: 37827989 DOI: 10.1021/acs.jafc.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.
Collapse
Affiliation(s)
- Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- Xianyang Jingwei Fu Tea Co. Ltd., Xianyang 712044, Shaanxi, China
| | - Li-Wen Zhong
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
10
|
Xiao L, Yang C, Zhang X, Wang Y, Li Z, Chen Y, Liu Z, Zhu M, Xiao Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem X 2023; 19:100811. [PMID: 37780291 PMCID: PMC10534189 DOI: 10.1016/j.fochx.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, β-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.
Collapse
Affiliation(s)
- Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
12
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
13
|
Wang H, Teng J, Huang L, Wei B, Xia N. Determination of the variations in the metabolic profile and sensory quality of Liupao tea during fermentation through UHPLC–HR–MS metabolomics. Food Chem 2023; 404:134773. [DOI: 10.1016/j.foodchem.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
14
|
The relationship between bacterial dynamics, phenols and antioxidant capability during compressed white tea storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Tang Y, Chen B, Huang X, He X, Yi J, Zhao H, Tian F, Liu Y, Liu B. Fu brick tea alleviates high fat induced non-alcoholic fatty liver disease by remodeling the gut microbiota and liver metabolism. Front Nutr 2022; 9:1062323. [PMID: 36618677 PMCID: PMC9815510 DOI: 10.3389/fnut.2022.1062323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Fu brick tea (FBT) and its extracts have good lipid-lowering effects and have been used in the treatment of obesity in previous studies. Unfortunately, the therapeutic effect of FBT on non-alcoholic fatty liver disease (NAFLD) has not been thoroughly studied. In this study, we explored the mechanism by which FBT alleviates NAFLD from the perspective of the gut microbiota and liver metabolites. The results showed that FBT could reduce the body weight, liver weight and abdominal fat of NAFLD mice, and improve liver pathological morphology, liver lipid deposition, blood lipids and liver function. Moreover, FBT improved the diversity of the gut microbiota and changed the profile of liver metabolism in NAFLD mice. Further studies showed that FBT could ameliorate the cecum barrier, and regulate the effects of factors related to lipid synthesis in the cecum and liver of NAFLD mice. In conclusion, the present study confirmed that FBT can alleviate high fat induced NAFLD by regulating the homeostasis of the gut microbiota and liver metabolites.
Collapse
Affiliation(s)
- Yan Tang
- Department of Basic Medicine, Yiyang Medical College, Yiyang, China
| | - Bowei Chen
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Huang
- Department of Clinical Medicine, Yiyang Medical College, Yiyang, China
| | - Xu He
- Department of Basic Medicine, Yiyang Medical College, Yiyang, China
| | - Jian Yi
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Zhao
- Department of Basic Medicine, Yiyang Medical College, Yiyang, China
| | - Fengming Tian
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, China
- MOE Key Laboratory of Research and Translation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Wang Z, Wang Z, Dai H, Wu S, Song B, Lin F, Huang Y, Lin X, Sun W. Identification of characteristic aroma and bacteria related to aroma evolution during long-term storage of compressed white tea. Front Nutr 2022; 9:1092048. [PMID: 36601074 PMCID: PMC9806140 DOI: 10.3389/fnut.2022.1092048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Compressed white tea (CWT) is a reprocessed tea of white tea. Long-term storage has greatly changed its aroma characteristics, but the material basis and transformation mechanism of its unique aroma are still unclear. In this study, flavor wheel, headspace gas chromatography ion mobility spectroscopy, chemometrics, and microbiomics were applied to study the flavor evolution and important aroma components during long-term storage of CWT, and core functional bacteria were screened. During long-term storage, the aroma of CWT gradually changed from sweet, fruity and floral to stale flavor, woody and herbal. A total of 56 volatile organic compounds (VOCs) were identified, 54 of which were significantly differences during storage. The alcohols content was the highest during 1-5 years of storage, the esters content was the highest during 7-13 years of storage, and the aldehydes content was the highest during 16 years of storage. Twenty-nine VOCs were identified as important aroma components, which were significantly correlated with 6 aroma sub-attributes (P < 0.05). The functional prediction of bacterial community reminded that bacterial community could participate in the transformation of VOCs during storage of CWT. Twenty-four core functional bacteria were screened, which were significantly associated with 29 VOCs. Finally, 23 characteristic differential VOCs were excavated, which could be used to identify CWT in different storage years. Taken together, these findings provided new insights into the changes in aroma characteristics during storage of CWT and increased the understanding of the mechanism of characteristic aroma formation during storage.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fuming Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Yan Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Xingchen Lin
- Fujian Ming Shan Tea Industry Co., Ltd., Fuding, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Weijiang Sun ✉
| |
Collapse
|
17
|
Hu T, Shi S, Ma Q. Modulation effects of microorganisms on tea in fermentation. Front Nutr 2022; 9:931790. [PMID: 35983492 PMCID: PMC9378870 DOI: 10.3389/fnut.2022.931790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tea is a popular traditional drink and has been reported to exhibit various health-promoting effects because of its abundance of polyphenols. Among all the tea products, fermented tea accounts for the majority of tea consumption worldwide. Microbiota plays an important role in the fermentation of tea, which involves a series of reactions that modify the chemical constituents and thereby affect the flavor and bioactivities of tea. In the present review, the microorganisms involved in fermented tea and tea extracts in the recent studies were summarized and the modulation effects of microorganisms on tea in fermentation, including polyphenols composition and content, biological activities and sensory characteristics, were also critically reviewed. It is expected that the data summarized could provide some references for the development of microbial fermented tea drinks with specific nutrition and health benefits.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Shuoshuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qin Ma
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|