1
|
Zhou E, Zhang L, He L, Xiao Y, Zhang K, Luo B. Cold exposure, gut microbiota and health implications: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170060. [PMID: 38242473 DOI: 10.1016/j.scitotenv.2024.170060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Temperature has been recognized as an important environmental factor affecting the composition and function of gut microbiota (GM). Although research on high-temperature impacts has been well studied, knowledge about the effect of cold exposure on GM remains limited. This narrative review aims to synthesize the latest scientific findings on the impact of cold exposure on mammalian GM, and its potential health implications. Chronic cold exposure could disrupt the α-diversity and the composition of GM in both experimental animals and wild-living hosts. Meanwhile, cold exposure could impact gut microbial metabolites, such as short-chain fatty acids. We also discussed plausible biological pathways and mechanisms by which cold-induced changes may impact host health, including metabolic homeostasis, fitness and thermogenesis, through the microbiota-gut-brain axis. Intriguingly, alterations in GM may provide a tool for favorably modulating the host response to the cold temperature. Finally, current challenges and future perspectives are discussed, emphasizing the need for translational research in humans. GM could be manipulated by utilizing nutritional strategies, such as probiotics and prebiotics, to deal with cold-related health issues and enhance well-being in populations living or working in cold environments.
Collapse
Affiliation(s)
- Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
3
|
Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 oC on energy balance, body mass and body composition in mice. Mol Metab 2022; 64:101551. [PMID: 35870706 PMCID: PMC9382332 DOI: 10.1016/j.molmet.2022.101551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Considerable attention is currently focused on the potential to switch on brown adipose tissue (BAT), or promote browning of white adipose tissue, to elevate energy expenditure and thereby reduce obesity levels. These processes are already known to be switched on by cold exposure. Yet humans living in colder regions do not show lower levels of obesity. This could be because humans shield themselves from external temperatures, or because the resultant changes in BAT and thermogenesis are offset by elevated food intake, or reductions in other components of expenditure. Scope of Review We exposed mice to 11 different ambient temperatures between 5 and 35 °C and characterized their energy balance and body weight/composition. As it got colder mice progressively increased their energy expenditure coincident with changes in thyroid hormone levels and increased BAT activity. Simultaneously, these increases in expenditure were matched by elevated food intake, and body mass remained stable. Nevertheless, within this envelope of unchanged body mass there were significant changes in body composition – with increases in the sizes of the liver and small intestine, presumably to support the greater food intake, and reductions in the level of stored fat – maximally providing about 10% of the total elevated energy demands. Major Conclusions Elevating activity of BAT may be a valid strategy to reduce fat storage even if overall body mass is unchanged but if it is mostly offset by elevated food intake, as found here, then the impacts may be small. Male and female mice were exposed to 11 different ambient temperatures between 5 and 35 °C. As it got colder mice increased both energy expenditure and food intake. Increased energy expenditure was coincident with increased THs and BAT activity. Stored fat was considerably reduced in colder conditions, providing about 10% of the elevated energy requirements. Elevating activity of BAT may be a valid strategy to reduce fat storage.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Rui Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Li
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - John R Speakman
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China.
| |
Collapse
|
4
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|