1
|
Sun Q, Fan Z, Yao F, Zhao X, Jiang M, Yang M, Mao M, Yang C. Association of dietary and circulating antioxidant vitamins with metabolic syndrome: an observational and Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1446719. [PMID: 39469581 PMCID: PMC11513263 DOI: 10.3389/fendo.2024.1446719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Aims The objective of this study was to investigate the associations of dietary and circulating antioxidant vitamins with metabolic syndrome (MetS), and to assess causality using Mendelian randomization (MR). Methods This study included 10,308 participants from the National Health and Nutrition Examination Survey. The associations of vitamins A, C, E and carotenoids with MetS were assessed using multivariable weighted logistic regression analysis. Subsequently, the MR approach was employed to test the causal associations, with inverse variance weighted (IVW) serving as the primary analysis. Results Observationally, dietary vitamin A (OR=0.852, 95%CI: 0.727-0.999), C (OR=0.802, 95%CI: 0.675-0.952), carotene (OR=0.832, 95%CI: 0.706-0.982), and β-carotene (OR=0.838, 95%CI: 0.706-0.995) in quartile 4 had lower incidents of MetS, when compared to quartile 1. Circulating vitamin C and carotene were also present inversely associated with MetS, while the vitamin A and E both increased this risk. IVW-MR confirmed the associations of dietary vitamin A (OR=0.920, 95%CI: 0.861-0.984), vitamin C (OR=0.905, 95%CI: 0.836-0.979) and carotene (OR=0.918, 95%CI: 0.865-0.974) with MetS. However, there was only circulating β-carotene (OR=0.909, 95%CI: 0.857-0.965) was found to be causally associated with MetS. Conclusions Observational and MR studies have shown that adequate dietary intake of vitamin A, C and carotenoids may help to reduce the risk of MetS.
Collapse
Affiliation(s)
- Qian Sun
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Zhixing Fan
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Department of Medical Record Management, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Fangfang Yao
- Clinical Laboratory, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Xiaojing Zhao
- School of Foreign Studies, China Three Gorges University, Yichang, China
| | - Min Jiang
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Mudan Yang
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Menglu Mao
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Chaojun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
3
|
Agrinier AL, Morissette A, Daoust L, Gignac T, Marois J, Varin TV, Pilon G, Larose É, Gagnon C, Desjardins Y, Anhê FF, Carreau AM, Vohl MC, Marette A. Camu-camu decreases hepatic steatosis and liver injury markers in overweight, hypertriglyceridemic individuals: A randomized crossover trial. Cell Rep Med 2024; 5:101682. [PMID: 39168095 PMCID: PMC11384942 DOI: 10.1016/j.xcrm.2024.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the adult population with no effective drug treatments available. Previous animal studies reported that a polyphenol-rich extract from the Amazonian berry camu-camu (CC) prevented hepatic steatosis in a mouse model of diet-induced obesity. This study aims to determine the impact of CC on hepatic steatosis (primary outcome) and evaluate changes in metabolic and gut microbiota profiles (exploratory outcomes). A randomized, double-blind, placebo-controlled crossover trial is conducted on 30 adults with overweight and hypertriglyceridemia, who consume 1.5 g of CC capsules or placebo daily for 12 weeks. CC treatment decreases liver fat by 7.43%, while it increases by 8.42% during the placebo intervention, showing a significant difference of 15.85%. CC decreases plasma aspartate and alanine aminotransferases levels and promotes changes in gut microbiota composition. These findings support that polyphenol-rich prebiotic may reduce liver fat in adults with overweight, reducing the risk of developing NAFLD.
Collapse
Affiliation(s)
- Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Arianne Morissette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Laurence Daoust
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Théo Gignac
- Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Julie Marois
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Thibault V Varin
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Éric Larose
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada
| | - Claudia Gagnon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Yves Desjardins
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada; Department of Plant Science, Faculty of Agriculture and Food sciences, Université Laval, Quebec City, QC, Canada
| | - Fernando F Anhê
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada; School of Nutrition, Université Laval, Quebec City, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
4
|
Pulido-Mateos EC, Lessard-Lord J, Desjardins Y, Roy D. Biotransformation of camu-camu galloylated ellagitannins by Lactiplantibacillus plantarum with extracellular tannase activity. Food Funct 2024; 15:7189-7199. [PMID: 38895881 DOI: 10.1039/d4fo00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Some strains of Lactiplantibacillus plantarum produce specific tannases that could enable the metabolism of ellagitannins into more bioavailable phenolic metabolites, thereby promoting the health effects of these polyphenols. However, the metabolic ability of these strains remains poorly understood. In this study, we analyzed the ability of broad esterase-producing (Est_1092+) and extracellular tannase-producing (TanA+) strains to convert a wide assortment of ellagitannins from camu-camu (Myrciaria dubia) fruit. To this end, forty-three strains were screened to identify and sequence (WGS) those producing Est_1092. In addition, six previously reported TanA+ strains were included in the study. Each strain (Est_1092+ or TanA+) was inoculated into a minimal culture medium supplemented with an aqueous camu-camu extract. After fermentation, supernatants were collected for semi-quantification of ellagitannins and their metabolites by mass spectrometry. For analysis, the strains were grouped according to their enzyme type and compared with an Est_1092 and TanA-lacking strain. Out of the forty-three isolates, three showed Est_1092 activity. Of the Est_1092+ and TanA+ strains, only the latter hydrolyzed the tri-galloyl-HHDP-glucose and various isomers of HHDP-galloyl-glucose, releasing HHDP-glucose and gallic acid. TanA+ strains also transformed three isomers of di-HHDP-galloyl-glucose, liberating di-HHDP-glucose and gallic acid. Overall, TanA+ strains released 3.6-4.9 times more gallic acid than the lacking strain. In addition, those exhibiting gallate decarboxylase activity pursued gallic acid metabolism to release pyrogallol. Neither Est_1092+ nor TanA+ strains transformed ellagitannin-core structures. In summary, TanA+ L. plantarum strains have the unique ability to hydrolyze a wide range of galloylated ellagitannins, releasing phenolic metabolites with additional health benefits.
Collapse
Affiliation(s)
- Elena C Pulido-Mateos
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
- Laboratoire de génomique microbienne, Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| | - Jacob Lessard-Lord
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
| | - Yves Desjardins
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
| | - Denis Roy
- Institut sur la nutrition et les aliments fonctionnels de l'Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada.
- Laboratoire de génomique microbienne, Département des sciences des aliments, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| |
Collapse
|
5
|
Noguera NH, Noguera DCLH, Machado APDF, Reguengo LM, Nascimento RDPD. Emerging berries from the Brazilian Amazon and Atlantic Forest biomes: new sources of bioactive compounds with potential health benefits. Food Funct 2024; 15:5752-5784. [PMID: 38753200 DOI: 10.1039/d4fo00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.
Collapse
Affiliation(s)
- Nathan Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Dyana Carla Lima Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Livia Mateus Reguengo
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| | - Roberto de Paula do Nascimento
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Singab ANB, Elhawary EA, Elkhawas YA, Fawzy IM, Moussa AY, Mostafa NM. Role of Nutraceuticals in Obesity Management: A Mechanism and Prospective Supported by Molecular Docking Studies. J Med Food 2024; 27:176-197. [PMID: 38324003 DOI: 10.1089/jmf.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Collapse
Affiliation(s)
- Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, Egypt
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yasmin A Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
7
|
García-Chacón J, Marín-Loaiza JC, Osorio C. Camu Camu ( Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties-A Review. ACS OMEGA 2023; 8:5169-5183. [PMID: 36816657 PMCID: PMC9933082 DOI: 10.1021/acsomega.2c07245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Amazonian Camu camu fruit (Myrciaria dubia (Kunth) McVaugh) has been called a "superfruit" due to its high levels of bioactive and antioxidant compounds such as polyphenols, carotenoids, and vitamin C. The biofunctional properties of camu camu fruit (including pulp, peel, and seeds) have been well established through several in vitro and in vivo studies. Several reports confirmed the nutritious and biofunctional value of camu camu extracts or its food-derived products, exhibiting antioxidant, antihyperglycemic, antihypertensive, and antiobesity activity, contributing to quality life improvement. Other studies showed antimicrobial, anti-inflammatory, antiproliferative, antihepatotoxic, antihemolytic, antimutagenic, and cell rejuvenation bioactivities. This Review summarizes the bioactive profile of camu camu fruit through the understanding of some physiological modulation processes and its contribution to the Amazon bioeconomy under the development of biofunctional food ingredients exhibiting health benefits.
Collapse
Affiliation(s)
| | | | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia, AA 14490 Bogotá, Colombia
| |
Collapse
|
8
|
Conti G, D’Amico F, Fabbrini M, Brigidi P, Barone M, Turroni S. Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out. Genes (Basel) 2022; 14:55. [PMID: 36672796 PMCID: PMC9859289 DOI: 10.3390/genes14010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.
Collapse
Affiliation(s)
- Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
10
|
García-Chacón J, Tello E, Coy-Barrera E, Peterson DG, Osorio C. Mono- n-butyl Malate-Derived Compounds from Camu-camu ( Myrciaria dubia) Malic Acid: The Alkyl-Dependent Antihyperglycemic-Related Activity. ACS OMEGA 2022; 7:39335-39346. [PMID: 36340106 PMCID: PMC9631754 DOI: 10.1021/acsomega.2c05551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Malic acid derivatives from camu-camu (Myrciaria dubia) fruit exhibited a strong in vitro inhibitory activity toward pancreatic α-amylase and α-glucosidase enzymes. During a bioguided chromatographic fractionation process of the whole fruit (pulp and peelings) polar extract, isomers (S)-4-butoxy-2-hydroxy-4-oxobutanoic acid (1) and (S)-4-butoxy-3-hydroxy-4-oxobutanoic acid (2) (84:16) were isolated and identified as a potent inhibitor of α-amylase (IC50= 11.69 ± 1.75 μg/mL) and α-glucosidase (IC50 = 102.69 ± 4.16 μg/mL). The chemical structures were confirmed by HPLC-ESIMS and 1H and 13C NMR (one- and two-dimensional) analyses. The structure-based virtual screening demonstrated that the aliphatic moiety plays a significant role in the binding mode of the test alkyl malate esters. Compound 1 exhibited the best interaction profile to bind both enzymes, having key structural features to form relevant contacts by involving adequate enzyme-ligand complex stabilization and compactness over time.
Collapse
Affiliation(s)
| | - Edisson Tello
- Department
of Food Science and Technology, Parker Food Science & Technology
Building, The Ohio State University, 2015 Fyffe Rd., The Ohio State University, Columbus, Ohio43210, United States
| | - Ericsson Coy-Barrera
- Bioorganic
Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá250247, Colombia
| | - Devin G. Peterson
- Department
of Food Science and Technology, Parker Food Science & Technology
Building, The Ohio State University, 2015 Fyffe Rd., The Ohio State University, Columbus, Ohio43210, United States
| | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia, AA 14490Bogotá, Colombia
| |
Collapse
|