1
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
2
|
Kowalczyk K, Coraça-Huber DC, Wille-Kollmar W, Berktold M, Nagl M. Activity of N-Chlorotaurine against Periodontal Pathogens. Int J Mol Sci 2024; 25:8357. [PMID: 39125925 PMCID: PMC11313407 DOI: 10.3390/ijms25158357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Dental plaque bacteria play an important role in the pathogenicity of periodontitis and peri-implantitis. Therefore, antimicrobial agents are one means of treatment. N-chlorotaurine (NCT) as an endogenous well-tolerated topical antiseptic could be of advantage for this purpose. Accordingly, its microbicidal activity against some dental plaque bacteria was investigated at therapeutic concentrations in vitro. In quantitative killing assays, the activity of NCT against planktonic bacteria and against biofilms grown for 48 h on implantation screws was tested. Electron microscopy was used to demonstrate the formation of biofilm and its morphological changes. The killing of planktonic bacteria of all tested species, namely Streptococcus sanguinis, Streptococcus salivarius, Streptococcus oralis, Streptococcus cristatus, Rothia aeria, and Capnocytophaga ochracea, was shown within 10-20 min by 1% NCT in 0.01 M phosphate-buffered saline at 37 °C. Bacteria grown on screws for 24 h were inactivated by 1% NCT after 15-20 min as well, but the formation of biofilm on the screws was visible in electron microscopy not before 48 h. The killing of biofilms by 1% NCT was demonstrated after 30 min (streptococci) and 40 min (R. aeria). As expected, NCT has broad activity against dental plaque bacteria as well and should be further investigated on its clinical efficacy in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Kacper Kowalczyk
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | | | - Michael Berktold
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (K.K.); (M.B.)
| |
Collapse
|
3
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
4
|
Odama M, Maegawa E, Suzuki K, Fujii Y, Maeda R, Murakami S, Ito T. Effects of Betulinic Acid on the Proliferation, Cellular Senescence, and Type 1 Interferon-Related Signaling Pathways in Human Dermal Fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6935-6943. [PMID: 37116884 PMCID: PMC10177962 DOI: 10.1021/acs.jafc.2c08563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Pentacyclic triterpenoids, including betulinic acid (BA), and their glycosides are abundant in fruits such as Zizyphus sp., Dillenia sp., and Azanza sp. These compounds exhibit various pharmacological activities in human cells. Here, we investigated the effects of BA on the cellular proliferation and senescence of cultured normal human dermal fibroblasts (NHDFs). BA treatment for 24-48 h increased the proliferation of low-passage young fibroblasts. Furthermore, BA reduced the proportion of senescent cells, as determined via the β-galactosidase assay of high-passage NHDFs. DNA microarray analysis and subsequent validations via quantitative real-time polymerase chain reaction revealed that BA downregulates interferon (IFN)-inducible genes, including IFIT1, IFITM1, IFI6, MX1, and OAS2, which are upregulated in replicative senescent cells compared with the low-passage young cells (control). Enrichment analysis based on the microarray data predicted BA-induced suppression of the type I IFN signaling pathway. BA downregulated the expression of the IRF9 transcriptional factor downstream of the type 1 IFN signaling pathway. IFN-inducible genes were downregulated via IRF9 silencing using siRNA compared with the negative control treated with siRNA. Consistently, BA treatment reduced the proportion of senescent cells and IFN-inducible genes in etoposide-treated fibroblasts. Hence, BA alleviates cellular senescence via the inhibition of the type 1 IFN signaling pathway in dermal fibroblasts.
Collapse
Affiliation(s)
- Mao Odama
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Eiji Maegawa
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Kohsuke Suzuki
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Yujiro Fujii
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Reika Maeda
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Shigeru Murakami
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Takashi Ito
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| |
Collapse
|
5
|
Miyazaki T, Ito T, Baseggio Conrado A, Murakami S. Editorial for Special Issue on “Regulation and Effect of Taurine on Metabolism”. Metabolites 2022; 12:metabo12090795. [PMID: 36144200 PMCID: PMC9503843 DOI: 10.3390/metabo12090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan
- Correspondence:
| | - Takashi Ito
- Faculty of Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Fukui, Japan
| | | | - Shigeru Murakami
- Faculty of Biotechnology, Fukui Prefectural University, Eiheiji 910-1195, Fukui, Japan
| |
Collapse
|
6
|
Speth C, Rambach G, Windisch A, Neurauter M, Maier H, Nagl M. Efficacy of Inhaled N-Chlorotaurine in a Mouse Model of Lichtheimia corymbifera and Aspergillus fumigatus Pneumonia. J Fungi (Basel) 2022; 8:jof8050535. [PMID: 35628790 PMCID: PMC9143854 DOI: 10.3390/jof8050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
N-chlorotaurine (NCT) can be used topically as a well-tolerated anti-infective at different body sites. The aim of this study was to investigate the efficacy of inhaled NCT in a mouse model of fungal pneumonia. Specific pathogen-free female C57BL/6JRj seven-week-old mice were immune-suppressed with cyclophosphamide. After 4 days, the mice were inoculated intranasally with 1.5 × 10E7 spores of Lichtheimia corymbifera or 1.0 × 10E7 spores of Aspergillus fumigatus. They were randomized and treated three times daily for 10 min with aerosolized 1% NCT or 0.9% sodium chloride starting 1 h after the inoculation. The mice were observed for survival for two weeks, and fungal load, blood inflammation parameters, bronchoalveolar lavage, and histology of organs were evaluated upon their death or at the end of this period. Inhalations were well-tolerated. After challenge with L. corymbifera, seven out of the nine mice (77.8%) survived for 15 days in the test group, which was in strong contrast to one out of the nine mice (11.1%) in the control group (p = 0.0049). The count of colony-forming units in the homogenized lung tissues came to 1.60 (1.30; 1.99; median, quartiles) log10 in the test group and to 4.26 (2.17; 4.53) log10 in the control group (p = 0.0032). Body weight and temperature, white blood count, and haptoglobin significantly improved with NCT treatment. With A. fumigatus, all the mice except for one in the test group died within 4 days without a significant difference from the control group. Inhaled NCT applied early demonstrated a highly significant curative effect in L. corymbifera pneumonia, while this could not be shown in A. fumigatus pneumonia, probably due to a too high inoculum. Nevertheless, this study for the first time disclosed efficacy of NCT in pneumonia in vivo.
Collapse
Affiliation(s)
- Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Christian-Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Christian-Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria
| | - Andrea Windisch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
| | - Hans Maier
- INNPATH GmbH-Institute of Pathology, A-6020 Innsbruck, Austria;
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (C.S.); (G.R.); (A.W.); (M.N.)
- Correspondence: ; Tel.: +43-(0)512-9003-70708; Fax: +43-(0)512-9003-73700
| |
Collapse
|