1
|
Toribio L, Martín MT, Bernal J. Supercritical Fluid Chromatography in Bioanalysis-A Review. J Sep Sci 2024; 47:e70003. [PMID: 39487700 DOI: 10.1002/jssc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
In the last decade, the instrumentation improvements in supercritical fluid chromatography (SFC) and the hyphenation to mass spectrometry (MS), have increased the SFC acceptance between scientists, becoming today a valuable tool in analytical chemistry. The unique selectivity, short analysis times, low consumption of organic solvents, and the greener mobile phase, have contributed to expanding its applicability which has led to an increase in the number of publications especially in the bioanalysis area. This work reviews the advantages and main applications of SFC in bioanalysis during the last 5 years. Fundamental aspects concerning mobile phase composition, stationary phase, hyphenation to MS as well as matrix effect have been discussed. Finally, the most relevant applications have been summarized.
Collapse
Affiliation(s)
- Laura Toribio
- Department of Analytical Chemistry, Faculty of Sciences, I. U. CINQUIMA, Analytical Chemistry Group (TESEA), University of Valladolid, Valladolid, Spain
| | - María Teresa Martín
- Department of Analytical Chemistry, Faculty of Sciences, I. U. CINQUIMA, Analytical Chemistry Group (TESEA), University of Valladolid, Valladolid, Spain
| | - José Bernal
- Department of Analytical Chemistry, Faculty of Sciences, I. U. CINQUIMA, Analytical Chemistry Group (TESEA), University of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Yoshida Y, Hirayama A, Arakawa K. Transcriptome analysis of the tardigrade Hypsibius exemplaris exposed to the DNA-damaging agent bleomycin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:414-428. [PMID: 38839369 DOI: 10.2183/pjab.pjab.100.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Tardigrades are microscopic animals that are renowned for their capabilities of tolerating near-complete desiccation by entering an ametabolic state called anhydrobiosis. However, many species also show high tolerance against radiation in the active state as well, suggesting cross-tolerance via the anhydrobiosis mechanism. Previous studies utilized indirect DNA damaging agents to identify core components of the cross-tolerance machinery in species with high anhydrobiosis capacities. However, it was difficult to distinguish whether transcriptomic changes were specific to DNA damage or mutual with anhydrobiosis. To this end, we performed transcriptome analysis on bleomycin-exposed Hypsibius exemplaris. We observed induction of several tardigrade-specific gene families, including a previously identified novel anti-oxidative stress family, which may be a core component of the cross-tolerance mechanism. We also identified enrichment of the tryptophan metabolism pathway, for which metabolomic analysis suggested engagement of this pathway in stress tolerance. These results provide several candidates for the core component of cross-tolerance, as well as possible anhydrobiosis machinery.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
3
|
Baxi AB, Li J, Quach VM, Pade LR, Moody SA, Nemes P. Cell lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer. Proc Natl Acad Sci U S A 2024; 121:e2311625121. [PMID: 38300871 PMCID: PMC10861879 DOI: 10.1073/pnas.2311625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (X. laevis), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis. Nonetheless, a comprehensive study of proteins and metabolites produced specifically in the SMO and their functional roles has been lacking. Here, we pioneer a deep discovery proteomic and targeted metabolomic screen of the SMO in comparison to the remainder of the embryo using high-resolution mass spectrometry (HRMS). Quantification of ~4,600 proteins and a panel of targeted metabolites documented differential expression for 460 proteins and multiple intermediates of energy metabolism in the SMO. Upregulation of oxidative phosphorylation and redox regulatory proteins gave rise to elevated oxidative stress and an accumulation of reactive oxygen species in the SMO. Imaging experiments corroborated these findings, discovering enrichment of hydrogen peroxide in the SMO. Chemical perturbation of the redox gradient perturbed mesoderm involution during early gastrulation. HRMS expands the bioanalytical toolbox of cell and developmental biology, providing previously unavailable information on molecular classes to challenge and refine our classical understanding of the Organizer and its function during early patterning of the embryo.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
- Department of Anatomy and Cell Biology,School of Medical and Health Sciences,The George Washington University, Washington, DC20037
| | - Jie Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Vi M. Quach
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Leena R. Pade
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Sally A. Moody
- Department of Anatomy and Cell Biology,School of Medical and Health Sciences,The George Washington University, Washington, DC20037
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
- Department of Anatomy and Cell Biology,School of Medical and Health Sciences,The George Washington University, Washington, DC20037
| |
Collapse
|
4
|
Harada Y, Mizote Y, Suzuki T, Hirayama A, Ikeda S, Nishida M, Hiratsuka T, Ueda A, Imagawa Y, Maeda K, Ohkawa Y, Murai J, Freeze HH, Miyoshi E, Higashiyama S, Udono H, Dohmae N, Tahara H, Taniguchi N. Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells. eLife 2023; 12:e83870. [PMID: 37461317 DOI: 10.7554/elife.83870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Mikako Nishida
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Hiratsuka
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Ayaka Ueda
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Imagawa
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeki Higashiyama
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Institute, Osaka International Cancer Institute, Osaka, Japan
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
5
|
Hayasaka R, Tabata S, Hasebe M, Ikeda S, Hikita T, Oneyama C, Yoshitake J, Onoshima D, Takahashi K, Shibata T, Uchida K, Baba Y, Soga T, Tomita M, Hirayama A. Metabolomics of small extracellular vesicles derived from isocitrate dehydrogenase 1-mutant HCT116 cells collected by semi-automated size exclusion chromatography. Front Mol Biosci 2023; 9:1049402. [PMID: 36710884 PMCID: PMC9873957 DOI: 10.3389/fmolb.2022.1049402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer-derived small extracellular vesicles (sEVs) are multifunctional particles with a lipid bilayer structure that are involved in cancer progression, such as malignant proliferation, distant metastasis, and cancer immunity evasion. The separation protocol used to isolate sEVs is an important process and thus, several have been developed, including ultracentrifugation (UC), size exclusion chromatography (SEC), and affinity purification using antibodies against sEV surface antigens. However, the effects of different separation methods on sEV components have not been adequately examined. Here, we developed a semi-automated system for collecting sEVs by combining SEC and preparative high-performance liquid chromatography and applied it to metabolome analysis. The developed SEC system could recover sEVs more efficiently and non-destructively than UC, suggesting that it is an appropriate recovery method for metabolic analysis and reflects biological conditions. Furthermore, using the developed SEC system, we performed metabolome analysis of sEVs from isocitrate dehydrogenase 1 (IDH)-mutated human colon HCT116 cells, which produce the oncogenic metabolite, 2-hydroxyglutaric acid (2-HG). IDH1-mutated HCT116 cells released significantly more sEVs than wild-type (WT) cells. The metabolomic profiles of IDH1 mutant and WT cells showed distinct differences between the cells and their sEVs. Notably, in IDH mutant cells, large amounts of 2-HG were detected not only in cells, but also in sEVs. These results indicate that the SEC system we developed has wide potential applications in sEVs research.
Collapse
Affiliation(s)
- Ryosuke Hayasaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Sho Tabata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Jun Yoshitake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Daisuke Onoshima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | | | - Takahiro Shibata
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan,Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan,College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan,*Correspondence: Akiyoshi Hirayama,
| |
Collapse
|
6
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|