1
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Morizet J, Chow D, Wijesinghe P, Schartner E, Dwapanyin G, Dubost N, Bruce GD, Anckaert E, Dunning K, Dholakia K. UVA Hyperspectral Light-Sheet Microscopy for Volumetric Metabolic Imaging: Application to Preimplantation Embryo Development. ACS PHOTONICS 2023; 10:4177-4187. [PMID: 38145166 PMCID: PMC10739996 DOI: 10.1021/acsphotonics.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023]
Abstract
Cellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. Spatially mapping the heterogeneity of cellular metabolic activity is of great importance for unraveling the overall cell and tissue health. In this regard, imaging the endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), with subcellular resolution and in a noninvasive manner would be useful to determine tissue and cell viability in a clinical environment, but practical use is limited by current imaging techniques. In this paper, we demonstrate the use of phasor-based hyperspectral light-sheet (HS-LS) microscopy using a single UVA excitation wavelength as a route to mapping metabolism in three dimensions. We show that excitation solely at a UVA wavelength of 375 nm can simultaneously excite NAD(P)H and FAD autofluorescence, while their relative contributions can be readily quantified using a hardware-based spectral phasor analysis. We demonstrate the potential of our HS-LS system by capturing dynamic changes in metabolic activity during preimplantation embryo development. To validate our approach, we delineate metabolic changes during preimplantation embryo development from volumetric maps of metabolic activity. Importantly, our approach overcomes the need for multiple excitation wavelengths, two-photon imaging, or significant postprocessing of data, paving the way toward clinical translation, such as in situ, noninvasive assessment of embryo viability.
Collapse
Affiliation(s)
- Josephine Morizet
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Darren Chow
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide 5505, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
| | - Philip Wijesinghe
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Erik Schartner
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
- Centre
of Light for Life, The University of Adelaide, Adelaide 5005, Australia
| | - George Dwapanyin
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Nicolas Dubost
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Graham D. Bruce
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
| | - Ellen Anckaert
- Faculty of
Medicine and Pharmacy, Vrije Universiteit
Brussel, Brussels 1070, Belgium
| | - Kylie Dunning
- Robinson
Research Institute, School of Biomedicine, The University of Adelaide, Adelaide 5501, Australia
- Australian
Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide 5505, Australia
- Institute
for Photonics and Advanced Sensing, The
University of Adelaide, Adelaide 5505, Australia
| | - Kishan Dholakia
- SUPA,
School of Physics and Astronomy, University
of St Andrews, North Haugh, St Andrews Fife KY16, U.K.
- Centre
of Light for Life, The University of Adelaide, Adelaide 5005, Australia
- School
of Biological Sciences, The University of
Adelaide, Adelaide 5005, Australia
| |
Collapse
|