1
|
Yadav E, Neupane NP, Otuechere CA, Yadav JP, Bhat MA, Al-Omar MA, Yadav P, Verma A. Cutaneous Wound-Healing Activity of Quercetin-Functionalized Bimetallic Nanoparticles. Chem Biodivers 2024:e202401551. [PMID: 39609953 DOI: 10.1002/cbdv.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Quercetin, a natural flavonol, is reported to have significant antioxidant and anti-inflammatory activity, which further aids in its good wound-healing properties via acting on acute as well as chronic inflammatory phases. The current study is focused on understanding the potential of the green-synthesized iron and zinc oxide bimetallic (i.e., zinc ferrite) nanoparticles of quercetin (ZFQNP) on wound healing by an in vivo study model. Bimetallic quercetin nanoparticles were prepared by the co-precipitation method and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS) analyses. Synthesized ZFQNP was utilized to prepare the ointment for topical application, and wound-healing activity was evaluated by using the excisional wound method in Wistar rats. The binding affinity of quercetin was ascertained against various wound-healing protein targets by molecular docking. Characterization data confirmed the synthesis of bimetallic ZFQNP of an irregular shape. Molecular docking studies showed satisfactory binding potential of quercetin with selected molecular targets. The study results of various parameters corroborated the significant wound-healing properties of ZFQNP, possibly attributed to the promising binding potential of quercetin with vital wound-healing targets. The study demonstrated that the quercetin bimetallic nanoparticles could provide a promising wound-healing effect.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Netra Prasad Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Chiagoziem A Otuechere
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
2
|
Naseroleslami M, Khakpai F, Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N. The modulatory effects of tyrosol and nano-tyrosol on anxiety-like behavior and emotional memory in streptozotocin-induced diabetic rats. Neuroreport 2024; 35:1011-1018. [PMID: 39324943 DOI: 10.1097/wnr.0000000000002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes were evaluated in streptozotocin-induced diabetic rats. Male diabetic rats were orally treated with 1 ml of saline, nano-niosome, tyrosol, and nano-tyrosol (20 mg/dl) for 30 days. Anxiety-like behavior and memory process were evaluated by an elevated plus-maze (EPM) test-retest paradigm. The results showed that a single intraperitoneal (i.p.) administration of streptozotocin (50 mg/kg) raised blood glucose. While daily intragastric administration of tyrosol and nano-tyrosol reduced blood glucose. Induction of type II diabetes produced a distorted cellular arrangement whereas treatment with tyrosol and nano-tyrosol showed a typical cellular arrangement in the liver. Furthermore, induction of type II diabetes decreased %OAT (%open-arm time) but daily intragastric application of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) enhanced %OAT and %OAE (%open-arm entry) in the EPM when compared to the saline groups, showing anxiogenic- and anxiolytic-like effects, respectively. Also, induction of type II diabetes increased %OAT while daily intragastric administration of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) decreased %OAT and %OAE in the EPM in comparison to the saline groups, displaying impairment and improvement of emotional memory, respectively. Interestingly, nano-tyrosol exhibited the highest significant effect rather than tyrosol. Upon these results, we proposed the beneficial effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
| | | | - Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Haniyeh-Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Abu-Baih RH, Ibrahim MFG, Elhamadany EY, Abu-Baih DH. Irbesartan mitigates the impact of cyclophosphamide-induced acute neurotoxicity in rats: Shedding highlights on NLRP3 inflammasome/CASP-1 pathway-driven immunomodulation. Int Immunopharmacol 2024; 135:112336. [PMID: 38801809 DOI: 10.1016/j.intimp.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
IIrbesartan (IRB), an angiotensin II type 1 receptor (AT1R) antagonist, has been widely employed in the medical field for its effectiveness in managing hypertension. However, there have been no documented investigations regarding the immunostimulatory properties of IRB. To address this gap, this study has been performed to assess the neuroprotective impact of IRB as an immunostimulatory agent in mitigating acute neurotoxicity induced by cyclophosphamide (CYP) in rats. mRNA levels of nuclear factor erythroid 2 (Nrf-2), interleukin (IL)-18, IL-1β, and MMP-1 have been assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the levels of malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) has been evaluated to assess the oxidative stress. Additionally, macrophage inflammatory protein 2 (MIP2) has been evaluated using enzyme-linked immunosorbent assay (ELISA). Western blotting has been used to investigate the protein expression of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 (CASP-1), along with an assessment of histopathological changes. Administration of IRB protected against oxidative stress by augmenting the levels of GSH and SOD as well as reducing MDA level. Also, administration of IRB led to a diminishment in the brain levels of MIP2 and MMP1. Furthermore, it led to a suppression of IL-1β and IL-18 levels, which are correlated with a reduction in the abundance of NLRP3 and subsequently CASP-1. This study provides new insights into the immunomodulatory effects of IRB in the context of CYP-induced acute neurotoxicity. Specifically, IRB exerts its effects by reducing oxidative stress, neuroinflammation, inhibiting chemokine recruitment, and mitigating neuronal degeneration through the modulation of immune markers. Therefore, it can be inferred that the use of IRB as an immunomodulator has the potential to effectively mitigate immune disorders associated with inflammation.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Drug Information Center, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Eyad Y Elhamadany
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt.
| | - Dalia H Abu-Baih
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| |
Collapse
|
4
|
Abu-Baih DH, Gomaa AAR, Abdel-Wahab NM, Abdelaleem ER, Zaher AMA, Hassan NF, Bringmann G, Abdelmohsen UR, Altemani FH, Algehainy NA, Mokhtar FA, Abdelwahab MF. Apium extract alleviates indomethacin-induced gastric ulcers in rats via modulating the VEGF and IK-κB/NF-κB p65 signaling pathway: insights from in silico and in vivo investigations. BMC Complement Med Ther 2024; 24:88. [PMID: 38355510 PMCID: PMC10865661 DOI: 10.1186/s12906-023-04333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/31/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Gastric ulcers represent a worldwide health problem, characterized by erosions that affect the mucous membrane of the stomach and may even reach the muscular layer, leading to serious complications. Numerous natural products have been assessed as anti-ulcerogenic agents, and have been considered as new approaches for treatment or prevention of gastric ulcers. The present research investigated the preventive benefits of Apium graveolens L. (Apiaceae), known as celery, seed extract towards indomethacin-induced ulceration of the stomach in rats. METHODS Metabolomic profiling, employing liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), was implemented with the aim of investigating the chemical profile of the seeds. Histopathological analysis of gastric tissues, as well as assessment of numerous inflammatory cytokines and oxidative stress indicators, confirmed the in vivo evaluation. RESULTS The prior treatment with A. graveolens seed extract resulted in a substantial reduction in the ulcer index when compared to the indomethacin group, indicating an improvement in stomach mucosal injury. Moreover, the gastroprotective effect was demonstrated through examination of the oxidative stress biomarkers which was significantly attenuated upon pre-treatment with A. graveolens seed extract. Vascular endothelial growth factor (VEGF), a fundamental angiogenic factor that stimulates angiogenesis, was markedly inhibited by indomethacin. A. graveolens seed extract restored this diminished level of VEGF. The dramatic reductions in NF-κB protein levels indicate a considerable attenuation of the indomethacin-induced IKκB/NF-κB p65 signaling cascade. These activities were also correlated to the tentatively featured secondary metabolites including, phenolic acids, coumarins and flavonoids, previously evidenced to exert potent anti-inflammatory and antioxidant activities. According to our network pharmacology study, the identified metabolites annotated 379 unique genes, among which only 17 genes were related to gastric ulcer. The PTGS2, MMP2 and PTGS1 were the top annotated genes related to gastric ulcer. The top biological pathway was the VEGF signaling pathway. CONCLUSION A. graveolens seed extract possesses significant anti-ulcer activity, similar to famotidine, against gastric lesions induced by indomethacin in rats. It is worth highlighting that the extract overcomes the negative effects of conventional chemical anti-secretory drugs because it does not lower stomach acidity.
Collapse
Affiliation(s)
- Dalia H Abu-Baih
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minia, 61111, Egypt
| | | | | | - Enas Reda Abdelaleem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza M Abdel Zaher
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 11571, Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- Department of pharmacognosy, Faculty of pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
5
|
Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability 2024; 33:104-115. [PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 03/17/2024]
Abstract
Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
Collapse
Affiliation(s)
- Norshamiza Abu Bakar
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - Nur Fatiha Ghazalli
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| |
Collapse
|
6
|
Serrano-García I, Olmo-García L, Monago-Maraña O, de Alba IMC, León L, de la Rosa R, Serrano A, Gómez-Caravaca AM, Carrasco-Pancorbo A. Characterization of the Metabolic Profile of Olive Tissues (Roots, Stems and Leaves): Relationship with Cultivars' Resistance/Susceptibility to the Soil Fungus Verticillium dahliae. Antioxidants (Basel) 2023; 12:2120. [PMID: 38136239 PMCID: PMC10741231 DOI: 10.3390/antiox12122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Verticillium wilt of olive (VWO) is one of the most widespread and devastating olive diseases in the world. Harnessing host resistance to the causative agent is considered one of the most important measures within an integrated control strategy of the disease. Aiming to understand the mechanisms underlying olive resistance to VWO, the metabolic profiles of olive leaves, stems and roots from 10 different cultivars with varying levels of susceptibility to this disease were investigated by liquid chromatography coupled to mass spectrometry (LC-MS). The distribution of 56 metabolites among the three olive tissues was quantitatively assessed and the possible relationship between the tissues' metabolic profiles and resistance to VWO was evaluated by applying unsupervised and supervised multivariate analysis. Principal component analysis (PCA) was used to explore the data, and separate clustering of highly resistant and extremely susceptible cultivars was observed. Moreover, partial least squares discriminant analysis (PLS-DA) models were built to differentiate samples of highly resistant, intermediate susceptible/resistant, and extremely susceptible cultivars. Root models showed the lowest classification capability, but metabolites from leaf and stem were able to satisfactorily discriminate samples according to the level of susceptibility. Some typical compositional patterns of highly resistant and extremely susceptible cultivars were described, and some potential resistance/susceptibility metabolic markers were pointed out.
Collapse
Affiliation(s)
- Irene Serrano-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Olga Monago-Maraña
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Avda. Esparta s/n, Crta. de Las Rozas-Madrid, E-28232 Madrid, Spain;
| | - Iván Muñoz Cabello de Alba
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Lorenzo León
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Raúl de la Rosa
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Ave. Menéndez Pidal s/n, E-14004 Córdoba, Spain; (L.L.); or (R.d.l.R.)
| | - Alicia Serrano
- Department of Experimental Biology, The University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaén, Spain;
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain; (I.S.-G.); (I.M.C.d.A.); (A.M.G.-C.); (A.C.-P.)
| |
Collapse
|
7
|
Elmaidomy AH, El Zawily A, Salem AK, Altemani FH, Algehainy NA, Altemani AH, Rateb ME, Abdelmohsen UR, Shady NH. New cytotoxic dammarane type saponins from Ziziphus spina-christi. Sci Rep 2023; 13:20612. [PMID: 37996449 PMCID: PMC10667233 DOI: 10.1038/s41598-023-46841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Cancer is the world's second-leading cause of death. Drug development efforts frequently focus on medicinal plants since they are a valuable source of anticancer medications. A phytochemical investigation of the edible Ziziphus spina-christi (F. Rhamnaceae) leaf extract afforded two new dammarane type saponins identified as christinin E and F (1, 2), along with the known compound christinin A (3). Different cancer cell lines, such as lung cancer (A549), glioblastoma (U87), breast cancer (MDA-MB-231), and colorectal carcinoma (CT-26) cell lines, were used to investigate the extracted compounds' cytotoxic properties. Our findings showed significant effects on all the tested cell lines at varying concentrations (1, 5, 10, and 20 µg/mL). The three compounds exhibited potent activity at low concentrations (< 10 μg/mL), as evidenced by their low IC50 values. To further investigate the complex relationships between these identified cancer-relevant biological targets and to identify critical targets in the pathogenesis of the disease, we turned to network pharmacology and in silico-based investigations. Following this, in silico-based analysis (e.g., inverse docking, ΔG calculation, and molecular dynamics simulation) was performed on the structures of the isolated compounds to identify additional potential targets for these compounds and their likely interactions with various signalling pathways relevant to this disease. Based on our findings, Z. spina-christi's compounds showed promise as potential anti-cancer therapeutic leads in the future.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Abdullah H Altemani
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia, 61111, Egypt.
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia, 61111, Egypt
| |
Collapse
|
8
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
9
|
Bakhsh HT, Mokhtar FA, Elmaidomy AH, Aly HF, Younis EA, Alzubaidi MA, Altemani FH, Algehainy NA, Majrashi MAA, Alsenani F, Bringmann G, Abdelmohsen UR, Abdelhafez OH. Abelmoschus eculentus Seed Extract Exhibits In Vitro and In Vivo Anti-Alzheimer's Potential Supported by Metabolomic and Computational Investigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2382. [PMID: 37376007 DOI: 10.3390/plants12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Abelmoschus esculentus Linn. (okra, F. Malvaceae) is a fruit widely consumed all over the world. In our study, the anti-Alzheimer's potential of A. esculentus was evaluated. An in vitro DPPH free radical assay on A. esculentus seed's total extract and AChE inhibition potential screening indicated a significant anti-Alzheimer's activity of the extract, which was confirmed through an in vivo study in an aluminum-intoxicated rat model. Additionally, in vivo results demonstrated significant improvement in Alzheimer's rats, which was confirmed by improving T-maze, beam balance tests, lower serum levels of AChE, norepinephrine, glycated end products, IL-6, and MDA. The levels of dopamine, BDNF, GSH, and TAC returned to normal values during the study. Moreover, histological investigations of brain tissue revealed that the destruction in collagen fiber nearly returns back to the normal pattern. Metabolomic analysis of the ethanolic extract of A. esculentus seeds via LC-HR-ESI-MS dereplicated ten compounds. A network pharmacology study displayed the relation between identified compounds and 136 genes, among which 84 genes related to Alzheimer's disorders, and focused on AChE, APP, BACE1, MAPT and TNF genes with interactions to all Alzheimer's disorders. Consequently, the results revealed in our study grant potential dietary elements for the management of Alzheimer's disorders.
Collapse
Affiliation(s)
- Hussain T Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia 44813, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
10
|
Mohamed EM, H Elmaidomy A, Alaaeldin R, Alsenani F, Altemani FH, Algehainy NA, Alanazi MA, Bagalagel A, Althagafi A, Elrehany MA, Abdelmohsen UR. Anti-Alzheimer Potential of a New (+)-Pinitol Glycoside Isolated from Tamarindus indica Pulp: In Vivo and In Silico Evaluations. Metabolites 2023; 13:732. [PMID: 37367890 DOI: 10.3390/metabo13060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Tamarindus indica Linn (tamarind, F. Leguminosae) is one of the most widely consumed edible fruits in the world. Phytochemical investigation of tamarind pulp n-butanol fraction yielded one new (+)-pinitol glycoside compound 1 (25% w/w), and 1D, 2D NMR, and HRESIMS investigation were used to confirm the new compound's structure. (+)-Pinitol glycoside showed anti-Alzheimer potential that was confirmed in prophylactic and treatment groups by decreasing time for the T-maze test; decreased TAO, brain and serum AChE, MDA, tau protein levels, and β amyloid peptide protein levels; and increasing GPX, SOD levels, and in vivo regression of the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. The reported molecular targets for human Alzheimer's disease were then used in a network pharmacology investigation to examine their complex interactions and identify the key targets in the disease pathogenesis. An in silico-based analysis (molecular docking, binding free energy calculation (ΔGBinding), and molecular dynamics simulation) was performed to identify the potential targets for compound 1. The findings of this study may lead to the development of dietary supplements for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Esraa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza 12566, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, University Zone, New Minia 61111, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulhamid Althagafi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, University Zone, New Minia 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
11
|
Flynn K, Mahmoud NN, Sharifi S, Gould LJ, Mahmoudi M. Chronic Wound Healing Models. ACS Pharmacol Transl Sci 2023; 6:783-801. [PMID: 37200810 PMCID: PMC10186367 DOI: 10.1021/acsptsci.3c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
In this paper, we review and analyze the commonly available wound healing models reported in the literature and discuss their advantages and issues, considering their relevance and translational potential to humans. Our analysis includes different in vitro and in silico as well as in vivo models and experimental techniques. We further explore the new technologies in the study of wound healing to provide an all encompassing review of the most efficient ways to proceed with wound healing experiments. We revealed that there is not one model of wound healing that is superior and can give translatable results to human research. Rather, there are many different models that have specific uses for studying certain processes or stages of wound healing. Our analysis suggests that when performing an experiment to assess stages of wound healing or different therapies to enhance healing, one must consider not only the species that will be used but also the type of model and how this can best replicate the physiology or pathophysiology in humans.
Collapse
Affiliation(s)
- Kiley Flynn
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Lisa J. Gould
- Department
of Surgery, South Shore Hospital, South Weymouth, Massachusetts 02190, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824-1312, United States
| |
Collapse
|
12
|
Scabicidal Potential of Coconut Seed Extract in Rabbits via Downregulating Inflammatory/Immune Cross Talk: A Comprehensive Phytochemical/GC-MS and In Silico Proof. Antibiotics (Basel) 2022; 12:antibiotics12010043. [PMID: 36671243 PMCID: PMC9854674 DOI: 10.3390/antibiotics12010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Scabies is an invasive skin condition caused by Sarcoptes scabiei mites. The present study investigates the antiscabies potential of coconut seed extract (CSE) in rabbits. GC-MS analysis of the seed oil identified 17 known compounds, while CSE phytochemical investigation afforded 4 known ones. The topical application of seed extract improved all signs of infection, and the improvement started 3 days post application. However, in vitro application of the extract caused 99% mortality of mites 1 day post application. Histopathological examination revealed the absence of inflammatory infiltration and hyperkeratosis of the epidermis, compared with ivermectin-treated groups which revealed less improvement. The mRNA gene expression results revealed a suppression of IL-1β, IL-6, IL-10, MMP-9, VEGF, and MCP-1, and an upregulation of I-CAM-1, KGF as well as TIMP-1. The docking analysis emphasized a strong binding of gondoic acid with IL-1β, IL-6, and VEGF with high binding scores of -5.817, -5.291, and -8.362 kcal/mol, respectively, and a high binding affinity of 3″(1‴-O-β-D-glucopyranosyl)-sucrose with GST with -7.24 kcal/mol. Accordingly, and for the first time, our results highlighted the scabicidal potential of coconut seed extract, which opens the gate for an efficient, cost-effective as well as herbal-based alternative for the control of scabies in rabbits.
Collapse
|
13
|
Roy B, Dev D, Sarkar A. Acanthus leucostachyus leaf extracts promote excision wound healing in mice. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.360563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|