1
|
Dar MI, Gulya A, Abass S, Dev K, Parveen R, Ahmad S, Qureshi MI. Hallmarks of diabetes mellitus and insights into the therapeutic potential of synergy-based combinations of phytochemicals in reducing oxidative stress-induced diabetic complications. Nat Prod Res 2024:1-15. [PMID: 39290074 DOI: 10.1080/14786419.2024.2402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Diabetes mellitus (DM) is a serious health issue and is still one of the major causes of mortality around the globe. Natural products have progressively integrated into modern, advanced medical practices. Phytoconstituents from some medicinal plants have demonstrated therapeutic activity in treating different metabolic disorders and have been used to treat DM and its severe complications. The present review provides details of the major anti-diabetic targets identified in the literature and also provides comprehensive information regarding the therapeutic role of a synergy-based combination of phytoconstituents that functions by controlling specific molecular pathways synchronously by inhibiting certain key regulators involved in the development and progression of DM. The review also implicated the role of oxidative stress in diabetic complications and presented scientific validations of phytochemicals and their synergy-based combination using in vitro and or in vivo approaches.
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | - Anu Gulya
- All India Institute of Medical Science, New Delhi, India
| | - Sageer Abass
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rabea Parveen
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | | |
Collapse
|
2
|
Rafat S, Hakami MA, Hazazi A, Alsaiari AA, Rashid S, Hasan MR, Aloliqi AA, Eisa AA, Dar MI, Khan MF, Dev K. Inhibition of Autophagy and the Cytoprotective Role of Smac Mimetic against ROS-Induced Cancer: A Potential Therapeutic Strategy in Relapse and Chemoresistance Cases in Breast Cancer. Curr Issues Mol Biol 2023; 45:5752-5764. [PMID: 37504279 PMCID: PMC10378261 DOI: 10.3390/cimb45070363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
With more than a million deaths each year, breast cancer is the top cause of death in women. Around 70% of breast cancers are hormonally responsive. Although several therapeutic options exist, cancer resistance and recurrence render them inefficient and insufficient. The major key reason behind this is the failure in the regulation of the cell death mechanism. In addition, ROS was also found to play a major role in this problem. The therapeutic benefits of Smac mimetic compound (SMC) BV6 on MCF7 were examined in the current study. Treatment with BV6 reduces viability and induces apoptosis in MCF7 breast cancer cells. BV6 suppresses autophagy and has demonstrated a defensive role in cancer cells against oxidative stress caused by H2O2. Overall, the present investigation shows that SMC has therapeutic and cytoprotective potential against oxidative stress in cancer cells. These Smac mimetic compounds may be used as anti-cancer drugs as well as antioxidants alone or in conjunction with other commonly used antioxidants.
Collapse
Affiliation(s)
- Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh 11911, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh 11911, Saudi Arabia
| | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia
| | - Mohammad Irfan Dar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Faisal Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|