1
|
Unni R, Andreani NA, Vallier M, Heinzmann SS, Taubenheim J, Guggeis MA, Tran F, Vogler O, Künzel S, Hövener JB, Rosenstiel P, Kaleta C, Dempfle A, Unterweger D, Baines JF. Evolution of E. coli in a mouse model of inflammatory bowel disease leads to a disease-specific bacterial genotype and trade-offs with clinical relevance. Gut Microbes 2023; 15:2286675. [PMID: 38059748 PMCID: PMC10730162 DOI: 10.1080/19490976.2023.2286675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.
Collapse
Affiliation(s)
- Rahul Unni
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nadia Andrea Andreani
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Marie Vallier
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Silke S. Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Martina A. Guggeis
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Olga Vogler
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Daniel Unterweger
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F. Baines
- Section Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|