1
|
Li S, Song C, Zhang H, Qin Y, Jiang M, Shen N. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO 3 in Actinobacillus succinogenes GXAS137. Pol J Microbiol 2023; 72:399-411. [PMID: 38000010 PMCID: PMC10725169 DOI: 10.33073/pjm-2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Collapse
Affiliation(s)
- Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Chaodong Song
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Qin
- National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
2
|
Wang H, Peng Y, Huang X, Xiao J, Ma L, Liu H, Huang H, Yang Z, Wang C, Wang X, Cao Z. Glycometabolic reprogramming in cementoblasts: A vital target for enhancing cell mineralization. FASEB J 2023; 37:e23241. [PMID: 37847512 DOI: 10.1096/fj.202300870rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.
Collapse
Affiliation(s)
- Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|