1
|
Tsutsumi T, Taira S, Matsuda R, Kageyama C, Wada M, Kitayama T, Morioka N, Morita K, Tsuboi K, Yamazaki N, Kido J, Nagata T, Dohi T, Tokumura A. Lysophospholipase D activity on oral mucosa cells in whole mixed human saliva involves in production of bioactive lysophosphatidic acid from lysophosphatidylcholine. Prostaglandins Other Lipid Mediat 2024; 174:106881. [PMID: 39134206 DOI: 10.1016/j.prostaglandins.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
We reported that lysophosphatidic acid (LPA) is present at 0.8 μM in mixed human saliva (MS). In this study, we examined the distribution, origin, and enzymatic generation pathways of LPA in MS. LPA was distributed in the medium and cell pellet fraction; a true level of soluble LPA in MS was about 150 nM. The soluble LPA was assumed to be generated by ecto-type lysophospholipase D on exfoliated cells in MS from LPC that originated mainly from the major salivary gland saliva. Our results with the albumin-back extraction procedures suggest that a significant pool of LPA is kept in the outer layer of the plasma membranes of detached oral mucosal cells. Such pool of LPA may contribute to wound healing in upper digestive organs including oral cavity. We obtained evidence that the choline-producing activity in MS was mainly due to Ca2+-activated lysophospholipase D activity of glycerophosphodiesterase 7.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka 882-8508, Japan
| | - Satoshi Taira
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Chieko Kageyama
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Mamiko Wada
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tomoya Kitayama
- Department of Pharmacy and Pharmaceutical Sciences, Mucogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsuya Morita
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Hiroshima 734-8553, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Naoshi Yamazaki
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiro Dohi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Faculty of Nursing, Hiroshima Bunka Gakuen University, Kure 737-0004, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
2
|
Zhao Z, Cheng J, Hou Q, Zhu J, Chen T, Lu S, Wu G, Lv H, Wu X. Role of FOXM1 and AURKB in regulating keratinocyte function in psoriasis. Open Med (Wars) 2024; 19:20241049. [PMID: 39381423 PMCID: PMC11459273 DOI: 10.1515/med-2024-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objective This study investigated the effect of forkhead box M1 (FOXM1) and Aurora kinase B (AURKB) on the epidermal function of keratinocytes. Methods Bioinformatics analysis was used to analyze the co-expression network of FOXM1 and its correlation with AURKB. The expression of FOXM1 and AURKB in tissues and cells was detected by immunofluorescence and real-time quantitative polymerase chain reaction, respectively. HaCaT cells were transfected with si-FOXM1 to knock down FOXM1. Cell proliferation was detected by cell counting kit-8 assay. Cell migration was detected by scratch assay. Cell invasion was detected by the Transwell invasion assay. Cell apoptosis and cell cycle were detected by flow cytometry. Results FOXM1 and AURKB were positively correlated and highly expressed in psoriatic lesions. After transfection of si-FOXM1, the expression levels of FOXM1 and AURKB genes significantly decreased. The proliferation of HaCaT cells decreased, the apoptosis rate increased significantly, and the proportion of cells in the G1 phase increased significantly, while the proportion of cells in the S phase decreased significantly. The scratch closure of HaCaT cells was reduced, and the number of cell invasions decreased significantly. Conclusion FOXM1 and AURKB may affect the progression of psoriasis by regulating the proliferation, cell cycle, migration, and invasion of keratinocytes.
Collapse
Affiliation(s)
- Zhaofeng Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Jie Cheng
- Department of Urology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Qiang Hou
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Jian Zhu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Tu Chen
- Department of Dermatology, Changqiao Street Community Health Service Center,
Shanghai, 200231, P.R. China
| | - Sheng Lu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Guiju Wu
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Hongli Lv
- Department of Dermatology, Jia Ding Central Hospital,
No. 01, Dingcheng Road, Jiading District, Shanghai, 201899, P.R. China
| | - Xiujuan Wu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, No. 366, Longchuan North Road, Xuhui District, Shanghai, 200031, P.R. China
| |
Collapse
|
3
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Wei M, Zhou G, Chen L, Zhang Y, Ma W, Gao L, Gao G. The prognostic and immune significance of PLBD1 in pan-cancer and its roles in proliferation and invasion of glioma. J Cancer 2024; 15:3857-3872. [PMID: 38911364 PMCID: PMC11190780 DOI: 10.7150/jca.96365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Cancer is a destructive disease and is currently the leading cause of major threats to human health. PLBD1 is a transcription factor that regulates phospholipid metabolism, but its role in tumors is unknown. We assessed pan-cancer expression, methylation, and mutation data of PLBD1 by multiple databases to investigate its clinical prognostic value. In addition, we examined the pan-cancer immunological signature of PLBD1, particularly in gliomas. Furthermore, we assessed the impact of PLBD1 knockdown on the proliferation and invasive capacity of glioma cells by in vitro experiments. Our results suggest that PLBD1 is highly expressed in multiple types of cancers, and it can serve as an independent prognostic factor for gliomas. In addition, we found that the epigenetic alterations of PLBD1 were highly heterogeneous in a variety of cancers, including gliomas, and that its high methylation was associated with poor prognosis in a broad range of cancers. Immunological profiling demonstrated that PLBD1 was significantly associated with immune cell infiltration and multiple immune checkpoints in gliomas and is a potential biomarker for gliomas. Furthermore, cellular experiments showed that knockdown of PLBD1 significantly inhibited the proliferation and invasive ability of glioma cells. In conclusion, PLBD1 is a potential tumor prognostic biomarker and immunotherapeutic target that plays a crucial role in glioma cell proliferation, invasion and immunotherapy.
Collapse
Affiliation(s)
- Minghao Wei
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
- Department of Neurosurgery Ward II, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Gaoyang Zhou
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lian Chen
- Department of Neurosurgery, the Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110001 China
| | - Yufu Zhang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Wei Ma
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
5
|
Zhang X, Du H, Liu X, Liu L, Zhang T. Knowledge, Attitudes and Practices Towards Psoriasis Among Patients and Their Family Members. Clin Cosmet Investig Dermatol 2024; 17:769-782. [PMID: 38586181 PMCID: PMC10999187 DOI: 10.2147/ccid.s454798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Purpose KAP studies serve to enhance health consciousness and furnish foundational data for appraising, strategizing, and enacting disease management and prejudice eradication initiatives. There remains a dearth of published studies elucidating the dimensions of knowledge, attitudes, and practices among psoriasis patients in China. To investigate the knowledge, attitudes and practices (KAP) towards psoriasis among patients and their family members in Northern China. Methods This web-based, cross-sectional study was conducted among psoriasis patients and their family members through a self-administered questionnaire. Results Among patients (n=260), their mean KAP scores were 9.76±5.69 (range: 0-19), 35.64±11.48 (range: 14-70), and 56.73±10.98 (range: 16-80), respectively. Among family members (n=237), their mean KAP scores were 11.93±5.34 (range: 0-19), 35.80±4.34 (range: 8-40), and 37.04±4.38 (range: 8-40), respectively. Structural equation modeling (SEM) analysis for patients indicated significant and negative path relations between knowledge and attitudes (β=-2.271, P<0.001), and between knowledge and practice (β=-0.398, P<0.001). Extended SEM analysis, which divides knowledge into K1, K2, and K3 parts, showed negative path relations between K3 and attitude (β=-1.300, P=0.002), between attitude and practice (β=-0.634, P<0.001). Moreover, SEM for family members showed positive path relations between knowledge and attitude (β=1.536, P<0.001), between attitude and practice (β=0.682, P<0.001). Conclusion Patients in Northern China demonstrated insufficient knowledge, negative attitude, and proactive practice, while their family members had insufficient knowledge, positive attitude, and proactive practice toward psoriasis. It is recommended to implement educational interventions addressing knowledge gaps among patients and families.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Dermatology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Hongyang Du
- Department of Dermatology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Xiaoxiao Liu
- Department of Dermatology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Luyao Liu
- Department of Dermatology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, 121001, People’s Republic of China
| | - Tingwei Zhang
- Department of Dermatology, The First Affiliated Hospital of JinZhou Medical University, Jinzhou, 121001, People’s Republic of China
| |
Collapse
|
6
|
Koussiouris J, Looby N, Kotlyar M, Kulasingam V, Jurisica I, Chandran V. Classifying patients with psoriatic arthritis according to their disease activity status using serum metabolites and machine learning. Metabolomics 2024; 20:17. [PMID: 38267619 PMCID: PMC10810020 DOI: 10.1007/s11306-023-02079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a heterogeneous inflammatory arthritis, affecting approximately a quarter of patients with psoriasis. Accurate assessment of disease activity is difficult. There are currently no clinically validated biomarkers to stratify PsA patients based on their disease activity, which is important for improving clinical management. OBJECTIVES To identify metabolites capable of classifying patients with PsA according to their disease activity. METHODS An in-house solid-phase microextraction (SPME)-liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for lipid analysis was used to analyze serum samples obtained from patients classified as having low (n = 134), moderate (n = 134) or high (n = 104) disease activity, based on psoriatic arthritis disease activity scores (PASDAS). Metabolite data were analyzed using eight machine learning methods to predict disease activity levels. Top performing methods were selected based on area under the curve (AUC) and significance. RESULTS The best model for predicting high disease activity from low disease activity achieved AUC 0.818. The best model for predicting high disease activity from moderate disease activity achieved AUC 0.74. The best model for classifying low disease activity from moderate and high disease activity achieved AUC 0.765. Compounds confirmed by MS/MS validation included metabolites from diverse compound classes such as sphingolipids, phosphatidylcholines and carboxylic acids. CONCLUSION Several lipids and other metabolites when combined in classifying models predict high disease activity from both low and moderate disease activity. Lipids of key interest included lysophosphatidylcholine and sphingomyelin. Quantitative MS assays based on selected reaction monitoring, are required to quantify the candidate biomarkers identified.
Collapse
Affiliation(s)
- John Koussiouris
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Nikita Looby
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Osteoarthritis Research Program, Division of Orthopaedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopaedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Vinod Chandran
- Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Krembil Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
7
|
Lantzanaki M, Vavilis T, Harizopoulou VC, Bili H, Goulis DG, Vavilis D. Ceramides during Pregnancy and Obstetrical Adverse Outcomes. Metabolites 2023; 13:1136. [PMID: 37999232 PMCID: PMC10673483 DOI: 10.3390/metabo13111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Ceramides are a group of sphingolipids located in the external plasma membrane layer and act as messengers in cellular pathways such as inflammatory processes and apoptosis. Plasma ceramides are biomarkers of cardiovascular disease, type 2 diabetes mellitus, Alzheimer's disease, various autoimmune conditions and cancer. During pregnancy, ceramides play an important role as stress mediators, especially during implantation, delivery and lactation. Based on the current literature, plasma ceramides could be potential biomarkers of obstetrical adverse outcomes, although their role in metabolic pathways under such conditions remains unclear. This review aims to present current studies that examine the role of ceramides during pregnancy and obstetrical adverse outcomes, such as pre-eclampsia, gestational diabetes mellitus and other complications.
Collapse
Affiliation(s)
- Maria Lantzanaki
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Theofanis Vavilis
- Department of Dentistry, School of Medicine, European University of Cyprus, Nicosia 2404, Cyprus;
- Laboratory of Medical Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vikentia C. Harizopoulou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Helen Bili
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios G. Goulis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios Vavilis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
8
|
Koussiouris J, Looby N, Kulasingam V, Chandran V. A Solid-Phase Microextraction-Liquid Chromatography-Mass Spectrometry Method for Analyzing Serum Lipids in Psoriatic Disease. Metabolites 2023; 13:963. [PMID: 37623906 PMCID: PMC10456752 DOI: 10.3390/metabo13080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Approximately 25% of psoriasis patients have an inflammatory arthritis termed psoriatic arthritis (PsA). There is strong interest in identifying and validating biomarkers that can accurately and reliably predict conversion from psoriasis to PsA using novel technologies such as metabolomics. Lipids, in particular, are of key interest in psoriatic disease. We sought to develop a liquid chromatography-mass spectrometry (LC-MS) method to be used in conjunction with solid-phase microextraction (SPME) for analyzing fatty acids and similar molecules. A total of 25 chromatographic methods based on published lipid studies were tested on two LC columns. As a proof of concept, serum samples from psoriatic disease patients (n = 27 psoriasis and n = 26 PsA) were processed using SPME and run on the selected LC-MS method. The method that was best for analyzing fatty acids and fatty acid-like molecules was optimized and applied to serum samples. A total of 18 tentatively annotated features classified as fatty acids and other lipid compounds were statistically significant between psoriasis and PsA groups using both multivariate and univariate approaches. The SPME-LC-MS method developed and optimized was capable of detecting fatty acids and similar lipids that may aid in differentiating psoriasis and PsA patients.
Collapse
Affiliation(s)
- John Koussiouris
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Nikita Looby
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (J.K.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Memorial University, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
9
|
Jo HG, Kim H, Baek E, Lee D, Hwang JH. Efficacy and Key Materials of East Asian Herbal Medicine Combined with Conventional Medicine on Inflammatory Skin Lesion in Patients with Psoriasis Vulgaris: A Meta-Analysis, Integrated Data Mining, and Network Pharmacology. Pharmaceuticals (Basel) 2023; 16:1160. [PMID: 37631075 PMCID: PMC10459676 DOI: 10.3390/ph16081160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis is a chronic inflammatory disease that places a great burden on both individuals and society. The use of East Asian herbal medicine (EAHM) in combination with conventional medications is emerging as an effective strategy to control the complex immune-mediated inflammation of this disease from an integrative medicine (IM) perspective. The safety and efficacy of IM compared to conventional medicine (CM) were evaluated by collecting randomized controlled trial literature from ten multinational research databases. We then searched for important key materials based on integrated drug data mining. Network pharmacology analysis was performed to predict the mechanism of the anti-inflammatory effect. Data from 126 randomized clinical trials involving 11,139 patients were used. Compared with CM, IM using EAHM showed significant improvement in the Psoriasis Area Severity Index (PASI) 60 (RR: 1.4280; 95% CI: 1.3783-1.4794; p < 0.0001), PASI score (MD: -3.3544; 95% CI: -3.7608 to -2.9481; p < 0.0001), inflammatory skin lesion outcome, quality of life, serum inflammatory indicators, and safety index of psoriasis. Through integrated data mining of intervention data, we identified four herbs that were considered to be representative of the overall clinical effects of IM: Rehmannia glutinosa (Gaertn.) DC., Isatis tinctoria subsp. athoa (Boiss.) Papan., Paeonia × suffruticosa Andrews, and Scrophularia ningpoensis Hemsl. They were found to have mechanisms to inhibit pathological keratinocyte proliferation and immune-mediated inflammation, which are major pathologies of psoriasis, through multiple pharmacological actions on 19 gene targets and 8 pathways in network pharmacology analysis. However, the quality of the clinical trial design and pharmaceutical quality control data included in this study is still not optimal; therefore, more high-quality clinical and non-clinical studies are needed to firmly validate the information explored in this study. This study is informative in that it presents a focused hypothesis and methodology for the value and direction of such follow-up studies.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Gyeonggi-do, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital 12, Haeol 2-gil, Paju-si 10865, Gyeonggi-do, Republic of Korea;
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Wang Z, Zhang G, Zhang H, Li L. Xiaoyin Jiedu Granules may alleviate psoriasis-like skin diseases in mice by regulating sphingosine 1-phosphate receptor expression and reducing Th17 cells. Heliyon 2023; 9:e19109. [PMID: 37636348 PMCID: PMC10448460 DOI: 10.1016/j.heliyon.2023.e19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is associated with the onset and severity of psoriasis, a chronic inflammatory skin disease linked to innate and adaptive immune responses. This study explores the therapeutic effect of Xiaoyin Jiedu Granules, a combination of traditional Chinese medicines, on psoriasis-like skin lesions in mice and the underlying mechanism. We used imiquimod (IMQ) to induce psoriasis-like dermatitis in mice; the effects of Xiaoyin Jiedu Granules on S1P receptors (S1PRs) were investigated using histology and immunohistochemistry. The effects of Xiaoyin Jiedu Granules on the proliferation, differentiation, and activation of the NF-κB pathway in keratinocytes were verified using quantitative polymerase chain reaction (qPCR) and western blotting analyses. CD4+Th17 cells were screened using flow cytometry; the effects of Xiaoyin Jiedu Granules on the differentiation of Th17 cells and the content of related inflammatory factors were also verified. S1PR1-5 was highly expressed in psoriatic lesions. Xiaoyin Jiedu Granules significantly inhibited the secretion of proliferation-related proteins (K6, K16, K17, and IL-36γ) and proinflammatory cytokines (IL-17 and IL-22), transformation of Th17 cells, and activation of the NF-κB pathway and effectively alleviated IMQ-induced psoriasis-like dermatitis. Overall, our findings indicate that Xiaoyin Jiedu Granules have anti-inflammatory activity against S1PR expression, keratinocytes, and immune cells and can therefore mitigate psoriasis. Inhibiting the expression of S1PRs may be an effective treatment strategy against psoriasis.
Collapse
Affiliation(s)
- Zi Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
- Department of Dermatology, Capital Medical University Affiliated Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Guangzhong Zhang
- Department of Dermatology, Capital Medical University Affiliated Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Haomin Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Lingling Li
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| |
Collapse
|