1
|
Cao AP, Wang YY, Shen YY, Liu YH, Liu JY, Wang Y, Guo Y, Wang RB, Xie BY, Pan X, Li AL, Xia Q, Zhang WN, Zhou T. Nicotinamide Suppresses Hyperactivation of Dendritic Cells to Control Autoimmune Disease through PARP Dependent Signaling. Nutrients 2024; 16:2665. [PMID: 39203802 PMCID: PMC11356829 DOI: 10.3390/nu16162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Dendritic cells (DCs) are crucial in initiating and shaping both innate and adaptive immune responses. Clinical studies and experimental models have highlighted their significant involvement in various autoimmune diseases, positioning them as promising therapeutic targets. Nicotinamide (NAM), a form of vitamin B3, with its anti-inflammatory properties, has been suggested, while the involvement of NAM in DCs regulation remains elusive. Here, through analyzing publicly available databases, we observe substantial alterations in NAM levels and NAM metabolic pathways during DCs activation. Furthermore, we discover that NAM, but not Nicotinamide Mononucleotide (NMN), significantly inhibits DCs over-activation in vitro and in vivo. The suppression of DCs hyperactivation effectively alleviates symptoms of psoriasis. Mechanistically, NAM impairs DCs activation through a Poly (ADP-ribose) polymerases (PARPs)-NF-κB dependent manner. Notably, phosphoribosyl transferase (NAMPT) and PARPs are significantly upregulated in lipopolysaccharide (LPS)-stimulated DCs and psoriasis patients; elevated NAMPT and PARPs expression in psoriasis patients correlates with higher psoriasis area and severity index (PASI) scores. In summary, our findings underscore the pivotal role of NAM in modulating DCs functions and autoimmune disorders. Targeting the NAMPT-PARP axis emerges as a promising therapeutic approach for DC-related diseases.
Collapse
Affiliation(s)
- Ai-Ping Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yun-Ying Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yan-Yan Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yan-Hong Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Jia-Yu Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Yue Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Rui-Bo Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Bo-Yang Xie
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Xin Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Ai-Ling Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| | - Tao Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310016, China; (A.-P.C.); (A.-L.L.)
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing 100039, China; (Y.-Y.W.); (Y.-Y.S.); (Y.-H.L.); (J.-Y.L.); (Y.W.); (Y.G.); (R.-B.W.); (B.-Y.X.); (X.P.); (Q.X.)
| |
Collapse
|
2
|
Nováková S, Baranovičová E, Hatoková Z, Beke G, Pálešová J, Záhumenská R, Baďurová B, Janíčková M, Strnádel J, Halašová E, Škovierová H. Comparison of Various Extraction Approaches for Optimized Preparation of Intracellular Metabolites from Human Mesenchymal Stem Cells and Fibroblasts for NMR-Based Study. Metabolites 2024; 14:268. [PMID: 38786745 PMCID: PMC11122815 DOI: 10.3390/metabo14050268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolomics has proven to be a sensitive tool for monitoring biochemical processes in cell culture. It enables multi-analysis, clarifying the correlation between numerous metabolic pathways. Together with other analysis, it thus provides a global view of a cell's physiological state. A comprehensive analysis of molecular changes is also required in the case of mesenchymal stem cells (MSCs), which currently represent an essential portion of cells used in regenerative medicine. Reproducibility and correct measurement are closely connected to careful metabolite extraction, and sample preparation is always a critical point. Our study aimed to compare the efficiencies of four harvesting and six extraction methods. Several organic reagents (methanol, ethanol, acetonitrile, methanol-chloroform, MTBE) and harvesting approaches (trypsinization vs. scraping) were tested. We used untargeted nuclear magnetic resonance spectroscopy (NMR) to determine the most efficient method for the extraction of metabolites from human adherent cells, specifically human dermal fibroblasts adult (HDFa) and dental pulp stem cells (DPSCs). A comprehensive dataset of 29 identified and quantified metabolites were determined to possess statistically significant differences in the abundances of several metabolites when the cells were detached mechanically to organic solvent compared to when applying enzymes mainly in the classes of amino acids and peptides for both types of cells. Direct scraping to organic solvent is a method that yields higher abundances of determined metabolites. Extraction with the use of different polar reagents, 50% and 80% methanol, or acetonitrile, mostly showed the same quality. For both HDFa and DPSC cells, the MTBE method, methanol-chloroform, and 80% ethanol extractions showed higher extraction efficiency for the most identified and quantified metabolites Thus, preparation procedures provided a cell sample processing protocol that focuses on maximizing extraction yield. Our approach may be useful for large-scale comparative metabolomic studies of human mesenchymal stem cell samples.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Eva Baranovičová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Zuzana Hatoková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia;
| | - Janka Pálešová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Romana Záhumenská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Bibiána Baďurová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Mária Janíčková
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (S.N.); (Z.H.); (J.P.); (R.Z.); (J.S.); (E.H.); (H.Š.)
| |
Collapse
|
3
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|