1
|
Iqbal A, Chen X, Khan R, Zaman M, Khan AH, Kiedrzyński M, Ebaid M, Alrefaei AF, Lamlom SF, Tang X, Zeeshan M. Vermicompost application improves leaf physiological activity, 2-acetyl-1-pyrroline, and grain yield of fragrant rice through efficient nitrogen assimilation under Cd stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1481372. [PMID: 39687322 PMCID: PMC11646779 DOI: 10.3389/fpls.2024.1481372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024]
Abstract
Cadmium (Cd) pollution in arable soils and its accumulation in rice plants have become a global concern because of their harmful effects on crop yield and human health. The in-situ stabilization method which involves the application of organic amendments such as vermicompost (VC), is frequently utilized for the remediation of Cd-contaminated soils. This study investigated the effects of VC on the soil chemical properties and the physio-biochemical functions of fragrant rice, as well as nitrogen (N) metabolism and assimilatory enzyme activities, 2-acetyl-1-pyrroline (2AP) content in rice grains, and the grain yields of fragrant rice cultivars, i.e., Xiangyaxiangzhan (XGZ) and.Meixiangzhan-2 (MXZ-2) under Cd stress condition. Four doses of VC (.VC1 = 0, VC2 = 3 t. ha-1, VC3 = 4 t ha-1, and VC4 = 6 t ha-1) and two levels of Cd (0 and 25 mg Cd kg-1) were used in this study. Our results showed that VC supplementation significantly (p < 0.05) improved soil characteristics, including soil organic carbon, available N, total N, phosphorus (P), and potassium (K). Furthermore, VC enhanced plant physiological and biochemical attributes in fragrant rice, such as net photosynthetic rate (Pn), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate oxoglutarate aminotransferase (GOGAT) enzyme activities, protein contents, amino acid, and 2-acetyl-1-pyrroline (2AP) contents under Cd stress condition. Specifically, the VC-amended treatment, Cd2 + VC3, led to an 86.75% increase in Pn and 2AP, and a 60.05% and 77.55% increase in grain yield for MXZ-2 and XGZ cultivars, respectively, compared to Cd-only treated plants (Cd2 + VC1). In addition, VC application significantly (p < 0.05) decreased the Cd uptake and accumulation in rice plants. The correlation analysis indicated that leaf physiological activity and biochemical traits are strongly correlated with soil qualitative traits, suggesting that improved soil health leads to enhanced leaf physiological activity, N metabolism, grain 2AP content, and grain yields. Among the treatments, Cd2 + VC3 showed the best performance in terms of soil fertility and rice quality and production. Consequently, our study indicates that using VC in soils may benefit rice growers by improving soil fertility and supporting sustainable rice productivity and quality in soils contaminated with Cd.
Collapse
Affiliation(s)
- Anas Iqbal
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyuan Chen
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rayyan Khan
- Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China
| | - Maid Zaman
- Department of Entomology, University of Haripur, Khyber Pakhtunkhwa, Haripur, Pakistan
| | - Aamir Hamid Khan
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Mohamed Ebaid
- Plant Production Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | | | - Sobhi F. Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Xiangru Tang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Zeeshan
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
2
|
Zeeshan M, Iqbal A, Salam A, Hu Y, Khan AH, Wang X, Miao X, Chen X, Zhang Z, Zhang P. Zinc Oxide Nanoparticle-Mediated Root Metabolic Reprogramming for Arsenic Tolerance in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:3142. [PMID: 39599351 PMCID: PMC11597289 DOI: 10.3390/plants13223142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Arsenate (AsV) is absorbed and accumulated by plants, which can affect their physiological activities, disrupt gene expression, alter metabolite content, and influence growth. Despite the potential of zinc oxide nanoparticles (ZnONPs) to mitigate the adverse effects of arsenic stress in plants, the underlying mechanisms of ZnONPs-mediated detoxification of AsV, as well as the specific metabolites and metabolic pathways involved, remain largely unexplored. In this study, we demonstrated root metabolomic profiling of soybean germinating seedlings subjected to 25 μmol L-1 arsenate (Na2HAsO4) and ZnONPs at concentrations of 25 μmol L-1 (ZnO25) and 50 μmol L-1 (ZnO50). The objective of this study was to examine the effects on soybean root metabolomics under AsV toxicity. Metabolomic analysis indicated that 453, 501, and 460 metabolites were significantly regulated in response to AsV, ZnO25, and ZnO50 treatments, respectively, compared to the control. Pathway analysis of the differentially regulated metabolites (DRMs) revealed that the tricarboxylic acid (TCA) cycle, glutathione metabolism, proline and aldarate metabolism, and arginine and proline metabolism were the most statistically enriched pathways in ZnONPs-supplemented plants. These findings suggest that ZnONPs enhance the tolerance response to AsV. Collectively, our results support the hypothesis that ZnONPs fertilization could be a potential strategy for improving soybean crop resilience under AsV stress.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Anas Iqbal
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China;
| | - Abdul Salam
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Aamir Hamid Khan
- Department of Biogeography, Paleoecology and Nature conservation, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Xin Wang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Xiaoran Miao
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Xiaoyuan Chen
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Zhixiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Peiwen Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
3
|
Ashraf H, Ghouri F, Zhong M, Cheema SA, Haider FU, Sun L, Ali S, Alshehri MA, Fu X, Shahid MQ. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122239. [PMID: 39182380 DOI: 10.1016/j.jenvman.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 μM) to minimize the toxic effect of Cr (100 μM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Cui B, Luo H, Yao X, Xing P, Deng S, Zhang Q, Yi W, Gu Q, Peng L, Yu X, Zuo C, Wang J, Wang Y, Tang X. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2253. [PMID: 39204689 PMCID: PMC11359265 DOI: 10.3390/plants13162253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.
Collapse
Affiliation(s)
- Baoling Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangbin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xianghai Yu
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Changjian Zuo
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Jingjing Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Yangbo Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
5
|
Wang Z, Wang Y, Lü J, Li T, Li S, Nie M, Shi G, Zhao X. Silicon and selenium alleviate cadmium toxicity in Artemisia selengensis Turcz by regulating the plant-rhizosphere. ENVIRONMENTAL RESEARCH 2024; 252:119064. [PMID: 38710427 DOI: 10.1016/j.envres.2024.119064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Soil cadmium (Cd) pollution has emerged as a pressing concern due to its deleterious impacts on both plant physiology and human well-being. Silicon (Si) is renowned for its ability to mitigate excessive Cd accumulation within plant cells and reduce the mobility of Cd in soil, whereas Selenium (Se) augments plant antioxidant capabilities and promotes rhizosphere microbial activity. However, research focusing on the simultaneous utilization of Si and Se to ameliorate plant Cd toxicity through multiple mechanisms within the plant-rhizosphere remains comparatively limited. This study combined hydroponic and pot experiments to investigate the effects of the combined application of Si and Se on Cd absorption and accumulation, as well as the growth and rhizosphere of A. selengensis Turcz under Cd stress. The results revealed that a strong synergistic effect was observed between both Si and Se. The combination of Si and Se significantly increased the activity and content of enzymes and non-enzyme antioxidants within A. selengensis Turcz, reduced Cd accumulation and inhibiting its translocation from roots to shoots. Moreover, Si and Se application improved the levels of reducing sugar, soluble protein, and vitamin C, while reducing nitrite content and Cd bioavailability. Furthermore, the experimental results showed that the combination of Si and Se not only increased the abundance of core rhizosphere microorganisms, but also stimulated the activity of soil enzymes, which effectively limited the migration of Cd in the soil. These findings provided valuable insights into the effective mitigation of soil Cd toxicity to plants and also the potential applications in improving plant quality and safety.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environmental Science and Engineering / Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Huei Polytechnic University, Huangshi 435003, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiliang Lü
- School of Environmental Science and Engineering / Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Huei Polytechnic University, Huangshi 435003, China.
| | - Tingqiang Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaohu Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|