1
|
Hakkaart X, Liu Y, Hulst M, El Masoudi A, Peuscher E, Pronk J, van Gulik W, Daran-Lapujade P. Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO 2 levels. Biotechnol Bioeng 2020; 117:721-735. [PMID: 31654410 PMCID: PMC7028085 DOI: 10.1002/bit.27210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Engineered strains of Saccharomyces cerevisiae are used for industrial production of succinic acid. Optimal process conditions for dicarboxylic‐acid yield and recovery include slow growth, low pH, and high CO2. To quantify and understand how these process parameters affect yeast physiology, this study investigates individual and combined impacts of low pH (3.0) and high CO2 (50%) on slow‐growing chemostat and retentostat cultures of the reference strain S. cerevisiae CEN.PK113‐7D. Combined exposure to low pH and high CO2 led to increased maintenance‐energy requirements and death rates in aerobic, glucose‐limited cultures. Further experiments showed that these effects were predominantly caused by low pH. Growth under ammonium‐limited, energy‐excess conditions did not aggravate or ameliorate these adverse impacts. Despite the absence of a synergistic effect of low pH and high CO2 on physiology, high CO2 strongly affected genome‐wide transcriptional responses to low pH. Interference of high CO2 with low‐pH signaling is consistent with low‐pH and high‐CO2 signals being relayed via common (MAPK) signaling pathways, notably the cell wall integrity, high‐osmolarity glycerol, and calcineurin pathways. This study highlights the need to further increase robustness of cell factories to low pH for carboxylic‐acid production, even in organisms that are already applied at industrial scale.
Collapse
Affiliation(s)
- Xavier Hakkaart
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Yaya Liu
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Mandy Hulst
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Anissa El Masoudi
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Eveline Peuscher
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Jack Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| |
Collapse
|
2
|
Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Fact 2019; 18:191. [PMID: 31690329 PMCID: PMC6833135 DOI: 10.1186/s12934-019-1244-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aromatic amino acids and their derivatives are valuable chemicals and are precursors for different industrially compounds. p-Coumaric acid is the main building block for complex secondary metabolites in commercial demand, such as flavonoids and polyphenols. Industrial scale production of this compound from yeast however remains challenging. RESULTS Using metabolic engineering and a systems biology approach, we developed a Saccharomyces cerevisiae platform strain able to produce 242 mg/L of p-coumaric acid from xylose. The same strain produced only 5.35 mg/L when cultivated with glucose as carbon source. To characterise this platform strain further, transcriptomic analysis was performed, comparing this strain's growth on xylose and glucose, revealing a strong up-regulation of the glyoxylate pathway alongside increased cell wall biosynthesis and unexpectedly a decrease in aromatic amino acid gene expression when xylose was used as carbon source. CONCLUSIONS The resulting S. cerevisiae strain represents a promising platform host for future production of p-coumaric using xylose as a carbon source.
Collapse
Affiliation(s)
- Gheorghe M Borja
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Angelica Rodriguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark
| | - Kate Campbell
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Måløes Vej 3, 2200, Copenhagen N, Denmark.
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2019; 85:AEM.01161-19. [PMID: 31375494 DOI: 10.1128/aem.01161-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/27/2019] [Indexed: 01/07/2023] Open
Abstract
So far, the physiology of Saccharomyces cerevisiae at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of S. cerevisiae under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of S. cerevisiae in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation. To compensate for loss of extracellular nitrogen- or phosphorus-containing compounds, establishing near-zero growth rates (μ < 0.002 h-1) in these retentostats required addition of low concentrations of ammonium or phosphate to reservoir media. In chemostats as well as in retentostats, strongly reduced cellular contents of the growth-limiting element (nitrogen or phosphorus) and high accumulation levels of storage carbohydrates were observed. Even at near-zero growth rates, culture viability in non-energy-limited retentostats remained above 80% and ATP synthesis was still sufficient to maintain an adequate energy status and keep cells in a metabolically active state. Compared to similar glucose-limited retentostat cultures, the nitrogen- and phosphate-limited cultures showed aerobic fermentation and a partial uncoupling of catabolism and anabolism. The possibility to achieve stable, near-zero growth cultures of S. cerevisiae under nitrogen or phosphorus limitation offers interesting prospects for high-yield production of bio-based chemicals.IMPORTANCE The yeast Saccharomyces cerevisiae is a commonly used microbial host for production of various biochemical compounds. From a physiological perspective, biosynthesis of these compounds competes with biomass formation in terms of carbon and/or energy equivalents. Fermentation processes functioning at extremely low or near-zero growth rates would prevent loss of feedstock to biomass production. Establishing S. cerevisiae cultures in which growth is restricted by the limited supply of a non-energy substrate therefore could have a wide range of industrial applications but remains largely unexplored. In this work we accomplished near-zero growth of S. cerevisiae through limited supply of a non-energy nutrient, namely, the nitrogen or phosphorus source, and carried out a quantitative physiological study of the cells under these conditions. The possibility to achieve near-zero-growth S. cerevisiae cultures through limited supply of a non-energy nutrient may offer interesting prospects to develop novel fermentation processes for high-yield production of bio-based chemicals.
Collapse
|
4
|
Smith HQ, Li C, Stanley CA, Smith TJ. Glutamate Dehydrogenase, a Complex Enzyme at a Crucial Metabolic Branch Point. Neurochem Res 2017; 44:117-132. [PMID: 29079932 DOI: 10.1007/s11064-017-2428-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/27/2022]
Abstract
In-vitro, glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate (α-KG). GDH is found in all organisms, but in animals is allosterically regulated by a wide array of metabolites. For many years, it was not at all clear why animals required such complex control. Further, in both standard textbooks and some research publications, there has been some controversy as to the directionality of the reaction. Here we review recent work demonstrating that GDH operates mainly in the catabolic direction in-vivo and that the finely tuned network of allosteric regulators allows GDH to meet the varied needs in a wide range of tissues in animals. Finally, we review the progress in using pharmacological agents to activate or inhibit GDH that could impact a wide range of pathologies from insulin disorders to tumor growth.
Collapse
Affiliation(s)
- Hong Q Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles A Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas James Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
5
|
Cueto-Rojas HF, Milne N, van Helmond W, Pieterse MM, van Maris AJA, Daran JM, Wahl SA. Membrane potential independent transport of NH 3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2017; 11:49. [PMID: 28412970 PMCID: PMC5392931 DOI: 10.1186/s12918-016-0381-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Background Microbial production of nitrogen containing compounds requires a high uptake flux and assimilation of the N-source (commonly ammonium), which is generally coupled with ATP consumption and negatively influences the product yield. In the industrial workhorse Saccharomyces cerevisiae, ammonium (NH4+) uptake is facilitated by ammonium permeases (Mep1, Mep2 and Mep3), which transport the NH4+ ion, resulting in ATP expenditure to maintain the intracellular charge balance and pH by proton export using the plasma membrane-bound H+-ATPase. Results To decrease the ATP costs for nitrogen assimilation, the Mep genes were removed, resulting in a strain unable to uptake the NH4+ ion. Subsequent analysis revealed that growth of this ∆mep strain was dependent on the extracellular NH3 concentrations. Metabolomic analysis revealed a significantly higher intracellular NHX concentration (3.3-fold) in the ∆mep strain than in the reference strain. Further proteomic analysis revealed significant up-regulation of vacuolar proteases and genes involved in various stress responses. Conclusions Our results suggest that the uncharged species, NH3, is able to diffuse into the cell. The measured intracellular/extracellular NHX ratios under aerobic nitrogen-limiting conditions were consistent with this hypothesis when NHx compartmentalization was considered. On the other hand, proteomic analysis indicated a more pronounced N-starvation stress response in the ∆mep strain than in the reference strain, which suggests that the lower biomass yield of the ∆mep strain was related to higher turnover rates of biomass components. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0381-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo F Cueto-Rojas
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Nicholas Milne
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Present Address: Evolva Biotech A/S, Lersø Parkallé 42, 2100, København Ø, Denmark
| | - Ward van Helmond
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Present Address: Nederlands Forensisch Instituut (NFI), Laan van Ypenburg 6, 2497 GB, Den Haag, The Netherlands
| | - Mervin M Pieterse
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.,Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE 106 91, Stockholm, Sweden
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
6
|
Campero‐Basaldua C, Quezada H, Riego‐Ruíz L, Márquez D, Rojas E, González J, El‐Hafidi M, González A. Diversification of the kinetic properties of yeast NADP-glutamate-dehydrogenase isozymes proceeds independently of their evolutionary origin. Microbiologyopen 2017; 6:e00419. [PMID: 27864882 PMCID: PMC5387307 DOI: 10.1002/mbo3.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the ScGDH1 and ScGDH3 encoded glutamate dehydrogenases (NADP-GDHs) catalyze the synthesis of glutamate from ammonium and α-ketoglutarate (α-KG). Previous kinetic characterization showed that these enzymes displayed different allosteric properties and respectively high or low rate of α-KG utilization. Accordingly, the coordinated action of ScGdh1 and ScGdh3, regulated balanced α-KG utilization for glutamate biosynthesis under either fermentative or respiratory conditions, safeguarding energy provision. Here, we have addressed the question of whether there is a correlation between the regulation and kinetic properties of the NADP-GDH isozymes present in S. cerevisiae (ScGdh1 and ScGdh3), Kluyveromyces lactis (KlGdh1), and Lachancea kluyveri (LkGdh1) and their evolutionary history. Our results show that the kinetic properties of K. lactis and L. kluyveri single NADP-GDHs are respectively similar to either ScGDH3 or ScGDH1, which arose from the whole genome duplication event of the S. cerevisiae lineage, although, KlGDH1 and LkGDH1 originated from a GDH clade, through an ancient interspecies hybridization event that preceded the divergence between the Saccharomyces clade and the one containing the genera Kluyveromyces, Lachancea, and Eremothecium. Thus, the kinetic properties which determine the NADP-GDHs capacity to utilize α-KG and synthesize glutamate do not correlate with their evolutionary origin.
Collapse
Affiliation(s)
- Carlos Campero‐Basaldua
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Héctor Quezada
- Laboratorio de Inmunología y ProteómicaHospital Infantil de México Federico GómezMexico CityMéxico
| | | | - Dariel Márquez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Erendira Rojas
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - James González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Mohammed El‐Hafidi
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMéxico
| | - Alicia González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| |
Collapse
|
7
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|