1
|
Changes in the Urine Metabolomic Profile in Patients Recovering from Severe COVID-19. Metabolites 2023; 13:metabo13030364. [PMID: 36984804 PMCID: PMC10058594 DOI: 10.3390/metabo13030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Metabolomics is a relatively new research area that focuses mostly on the profiling of selected molecules and metabolites within the organism. A SARS-CoV-2 infection itself can lead to major disturbances in the metabolite profile of the infected individuals. The aim of this study was to analyze metabolomic changes in the urine of patients during the acute phase of COVID-19 and approximately one month after infection in the recovery period. We discuss the observed changes in relation to the alterations resulting from changes in the blood plasma metabolome, as described in our previous study. The metabolome analysis was performed using NMR spectroscopy from the urine of patients and controls. The urine samples were collected at three timepoints, namely upon hospital admission, during hospitalization, and after discharge from the hospital. The acute COVID-19 phase induced massive alterations in the metabolic composition of urine was linked with various changes taking place in the organism. Discriminatory analyses showed the feasibility of successful discrimination of COVID-19 patients from healthy controls based on urinary metabolite levels, with the highest significance assigned to citrate, Hippurate, and pyruvate. Our results show that the metabolomic changes persist one month after the acute phase and that the organism is not fully recovered.
Collapse
|
2
|
Raza A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:741-763. [PMID: 33251564 DOI: 10.1007/s00299-020-02635-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 05/22/2023]
Abstract
Comprehensive metabolomic investigations provide a large set of stress-related metabolites and metabolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and mGWAS boosted our understanding of improving numerous quantitative traits under heat stress. During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation, evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environmental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonetheless, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever-progressing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance HS tolerance in plants to achieve a goal of "zero hunger".
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
3
|
Drabińska N, Młynarz P, de Lacy Costello B, Jones P, Mielko K, Mielnik J, Persad R, Ratcliffe NM. An Optimization of Liquid-Liquid Extraction of Urinary Volatile and Semi-Volatile Compounds and Its Application for Gas Chromatography-Mass Spectrometry and Proton Nuclear Magnetic Resonance Spectroscopy. Molecules 2020; 25:E3651. [PMID: 32796601 PMCID: PMC7463579 DOI: 10.3390/molecules25163651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Urinary volatile compounds (VCs) have been recently assessed for disease diagnoses. They belong to very diverse chemical classes, and they are characterized by different volatilities, polarities and concentrations, complicating their analysis via a single analytical procedure. There remains a need for better, lower-cost methods for VC biomarker discovery. Thus, there is a strong need for alternative methods, enabling the detection of a broader range of VCs. Therefore, the main aim of this study was to optimize a simple and reliable liquid-liquid extraction (LLE) procedure for the analysis of VCs in urine using gas chromatography-mass spectrometry (GC-MS), in order to obtain the maximum number of responses. Extraction parameters such as pH, type of solvent and ionic strength were optimized. Moreover, the same extracts were analyzed using Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), to evaluate the applicability of a single urine extraction for multiplatform purposes. After the evaluation of experimental conditions, an LLE protocol using 2 mL of urine in the presence of 2 mL of 1 M sulfuric acid and sodium sulphate extracted with dichloromethane was found to be optimal. The optimized method was validated with the external standards and was found to be precise and linear, and allowed for detection of >400 peaks in a single run present in at least 50% of six samples-considerably more than the number of peaks detected by solid-phase microextracton fiber pre-concentration-GC-MS (328 ± 6 vs. 234 ± 4). 1H-NMR spectroscopy of the polar and non-polar extracts extended the range to >40 more (mainly low volatility compounds) metabolites (non-destructively), the majority of which were different from GC-MS. The more peaks detectable, the greater the opportunity of assessing a fingerprint of several compounds to aid biomarker discovery. In summary, we have successfully demonstrated the potential of LLE as a cheap and simple alternative for the analysis of VCs in urine, and for the first time the applicability of a single urine solvent extraction procedure for detecting a wide range of analytes using both GC-MS and 1H-NMR analysis to enhance putative biomarker detection. The proposed method will simplify the transport between laboratories and storage of samples, as compared to intact urine samples.
Collapse
Affiliation(s)
- Natalia Drabińska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10 Tuwima Str., 10-748 Olsztyn, Poland
- Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK;
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeże Stanisława Wyspianskiego, 50-370 Wroclaw, Poland; (P.M.); (K.M.); (J.M.)
| | - Ben de Lacy Costello
- Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK;
| | | | - Karolina Mielko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeże Stanisława Wyspianskiego, 50-370 Wroclaw, Poland; (P.M.); (K.M.); (J.M.)
| | - Justyna Mielnik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeże Stanisława Wyspianskiego, 50-370 Wroclaw, Poland; (P.M.); (K.M.); (J.M.)
| | - Raj Persad
- Bristol Urological Institute, Southmead Hospital, Bristol BS10 5BN, UK;
| | - Norman Mark Ratcliffe
- Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK;
| |
Collapse
|