1
|
Liu Z, Teng C, Wan W, Wu F, Wu C, Ji W, Shan Y. A panel of four plasma amino acids is a promising biomarker for newly diagnosed bladder cancer. Clin Nutr 2024; 43:1599-1608. [PMID: 38776618 DOI: 10.1016/j.clnu.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Metastasis and recurrence are the main causes of death in post-operative bladder cancer (BC), emphasizing the importance of exploring early-stage diagnostic markers. Serum biomarkers constitute a promising diagnostic approach for asymptomatic stage cancer as they are non-invasive, have high accuracy and low cost. AIMS To correlate concentrations of plasma amino acids with BC progression to assess their utility as an early-stage diagnostic. METHODS Newly diagnosed BC patients (n = 95) and normal controls (n = 96) were recruited during the period from 1 December 2018 to 30 December 2020. General and food frequency questionnaires established their basic information and dietary intake data. Venous blood samples were collected from fasting subjects and used to detect levels of plasma amino acids by liquid chromatography-mass spectrometry. Verification was performed on the GSE13507 transcriptome gene expression matrix of BC from Gene Expression Omnibus (GEO) database. RESULTS Eleven amino acids have been identified as altered in the plasma of newly diagnosed BC patients compared to controls (P < 0.05). Adjusted by gender, education, smoking and other factors, plasma ornithine level (OR = 0.256, 95% CI: 0.104-0.630) is a protective factor for BC, plasma levels of methionine (OR = 3.460, 95% CI: 1.384-8.651), arginine (OR = 3.851, 95% CI: 1.542-9.616), and glutamate (OR = 3.813, 95% CI: 1.543-9.419) are all risk factors for BC. ROC analysis demonstrated that the combination of plasma ornithine, methionine, arginine and glutamate could accurately diagnose BC (AUC = 0.84, 95% CI: 0.747-0.833). In addition, the mRNA level of arginase 1 was decreased (P < 0.05), while the inducible nitric oxide synthase was increased significantly, which may be linked with the disturbance of arginine metabolism in BC patients. Further analysis of GEO database confirmed the role of arginine metabolism. CONCLUSION A biomarker panel containing four amino acids may provide a feasible strategy for the early diagnosis of BC. However, further validation is required through prospective studies.
Collapse
Affiliation(s)
- Zhipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wenting Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Fan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiping Ji
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 325000, China; Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Pereira F, Domingues MR, Vitorino R, Guerra IMS, Santos LL, Ferreira JA, Ferreira R. Unmasking the Metabolite Signature of Bladder Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3347. [PMID: 38542319 PMCID: PMC10970247 DOI: 10.3390/ijms25063347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.
Collapse
Affiliation(s)
- Francisca Pereira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - M. Rosário Domingues
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M. S. Guerra
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
| |
Collapse
|
4
|
Singh P, Yadav R, Verma M, Chhabra R. Antileukemic Activity of hsa-miR-203a-5p by Limiting Glutathione Metabolism in Imatinib-Resistant K562 Cells. Curr Issues Mol Biol 2022; 44:6428-6438. [PMID: 36547099 PMCID: PMC9777165 DOI: 10.3390/cimb44120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Imatinib has been the first and most successful tyrosine kinase inhibitor (TKI) for chronic myeloid leukemia (CML), but many patients develop resistance to it after a satisfactory response. Glutathione (GSH) metabolism is thought to be one of the factors causing the emergence of imatinib resistance. Since hsa-miR-203a-5p was found to downregulate Bcr-Abl1 oncogene and also a link between this oncogene and GSH metabolism is reported, the present study aimed to investigate whether hsa-miR-203a-5p could overcome imatinib resistance by targeting GSH metabolism in imatinib-resistant CML cells. After the development of imatinib-resistant K562 (IR-K562) cells by gradually exposing K562 (C) cells to increasing doses of imatinib, resistant cells were transfected with hsa-miR-203a-5p (R+203). Thereafter, cell lysates from various K562 cell sets (imatinib-sensitive, imatinib-resistant, and miR-transfected imatinib-resistant K562 cells) were used for GC-MS-based metabolic profiling. L-alanine, 5-oxoproline (also known as pyroglutamic acid), L-glutamic acid, glycine, and phosphoric acid (Pi)-five metabolites from our data, matched with the enumerated 28 metabolites of the MetaboAnalyst 5.0 for the GSH metabolism. All of these metabolites were present in higher concentrations in IR-K562 cells, but intriguingly, they were all reduced in R+203 and equated to imatinib-sensitive K562 cells (C). Concludingly, the identified metabolites associated with GSH metabolism could be used as diagnostic markers.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
| | - Radheshyam Yadav
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
| | - Malkhey Verma
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Correspondence: or (M.V.); or (R.C.); Tel.: +91-7589489833 (M.V.); +91-9478723446 (R.C.)
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
- Correspondence: or (M.V.); or (R.C.); Tel.: +91-7589489833 (M.V.); +91-9478723446 (R.C.)
| |
Collapse
|
5
|
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Vakhrushev IV, Lupatov AY, Ponomarenko EA, Poverennaya EV. Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise and Fall. Cells 2022; 11:cells11223548. [PMID: 36428976 PMCID: PMC9688728 DOI: 10.3390/cells11223548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses.
Collapse
|
6
|
Ligor T, Adamczyk P, Kowalkowski T, Ratiu IA, Wenda-Piesik A, Buszewski B. Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection. Molecules 2022; 27:5023. [PMID: 35956972 PMCID: PMC9370153 DOI: 10.3390/molecules27155023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer is one of most common types of cancer diagnosed in the genitourinary tract. Typical tests are costly and characterized by low sensitivity, which contributes to a growing interest in volatile biomarkers. Head space solid phase microextraction (SPME) was applied for the extraction of volatile organic compounds from urine samples, and gas chromatography time of flight mass spectrometry (GC×GC TOF MS) was used for the separation and detection of urinary volatiles. A cohort of 40 adult patients with bladder cancer and 57 healthy persons was recruited. Different VOC profiles were obtained for urine samples taken from each group. Twelvecompounds were found only in the samples from theBC group.The proposed candidate biomarkers are butyrolactone; 2-methoxyphenol; 3-methoxy-5-methylphenol; 1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one; nootkatone and 1-(2,6,6-trimethyl-1-cyclohexenyl)-2-buten-1-one.Since most of the studies published in the field are proving the potential of VOCs detected in urine samples for the screening and discrimination of patients with bladder cancer from healthy, but rarely presenting the identity of proposed biomarkers, our study represents a novel approach.
Collapse
Affiliation(s)
- Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Przemysław Adamczyk
- Department of General and Oncologic Urology, Nicolaus Copernicus Hospital in Torun, 87-100 Toruń, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Ileana Andreea Ratiu
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele, RO-400239 Cluj-Napoca, Romania
| | - Anna Wenda-Piesik
- Department of Agronomics, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Chabaud S, Pellerin È, Caneparo C, Ringuette‑goulet C, Pouliot F, Bolduc S. Bladder cancer cell lines adapt their aggressiveness profile to oxygen tension. Oncol Lett 2022; 24:220. [PMID: 35720486 PMCID: PMC9178683 DOI: 10.3892/ol.2022.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
During the process of tumor growth, cancer cells will be subjected to intermittent hypoxia. This results from the delay in the development of the vascular network in relation to the proliferation of cancer cells. The hypoxic nature of a tumor has been demonstrated as a negative factor for patient survival. To evaluate the impact of hypoxia on the survival and migration properties of low and high-grade bladder cancer cell lines, two low-grade (MGHU-3 and SW-780) and two high-grade (SW-1710 and T24) bladder cancer cell lines were cultured in normoxic (20% O2) or hypoxic atmospheric conditions (2% O2). The response of bladder cancer cell lines to hypoxic atmospheric cell culture conditions was examined under several parameters, including epithelial-mesenchymal transition, doubling time and metabolic activities, thrombospondin-1 expression, whole Matrix Metallo-Proteinase activity, migration and resistance to oxidative stress. The low-grade cell line response to hypoxia was heterogeneous even if it tended to adopt a more aggressive profile. Hypoxia enhanced migration and pro-survival properties of MGHU-3 cells, whereas these features were reduced for the SW-780 cell line cultured under low oxygen tension. The responses of tested high-grade cell lines were more homogeneous and tended to adopt a less aggressive profile. Hypoxia drastically changed some of the bladder cancer cell line properties, for example matrix metalloproteinases expression for all cancer cells but also switch in glycolytic metabolism of low grade cancer cells. Overall, studying bladder cancer cells in hypoxic environments are relevant for the translation from in vitro findings to in vivo context.
Collapse
Affiliation(s)
- Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Cassandra Ringuette‑goulet
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| | - Frédéric Pouliot
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 4G2, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale (Experimental Organogenesis Research Center)/LOEX, Regenerative Medicine Division, CHU de Québec‑Laval University Research Center, Enfant‑Jésus Hospital, Quebec, QC G1J 1Z4, Canada
| |
Collapse
|
8
|
di Meo NA, Loizzo D, Pandolfo SD, Autorino R, Ferro M, Porta C, Stella A, Bizzoca C, Vincenti L, Crocetto F, Tataru OS, Rutigliano M, Battaglia M, Ditonno P, Lucarelli G. Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer. Int J Mol Sci 2022; 23:ijms23084173. [PMID: 35456991 PMCID: PMC9030452 DOI: 10.3390/ijms23084173] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolomic analysis has proven to be a useful tool in biomarker discovery and the molecular classification of cancers. In order to find new biomarkers, and to better understand its pathological behavior, bladder cancer also has been studied using a metabolomics approach. In this article, we review the literature on metabolomic studies of bladder cancer, focusing on the different available samples (urine, blood, tissue samples) used to perform the studies and their relative findings. Moreover, the multi-omic approach in bladder cancer research has found novel insights into its metabolic behavior, providing excellent start-points for new diagnostic and therapeutic strategies. Metabolomics data analysis can lead to the discovery of a “signature pathway” associated with the progression of bladder cancer; this aspect could be potentially valuable in predictions of clinical outcomes and the introduction of new treatments. However, further studies are needed to give stronger evidence and to make these tools feasible for use in clinical practice.
Collapse
Affiliation(s)
- Nicola Antonio di Meo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Davide Loizzo
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
| | - Savio Domenico Pandolfo
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
- Division of Urology, University of Naples “Federico II”, 80100 Naples, Italy
| | - Riccardo Autorino
- Division of Urology, Virginia Commonwealth University (VCU) Health, Richmond, VA 23298, USA; (S.D.P.); (R.A.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy;
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Alessandro Stella
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy; (C.P.); (A.S.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Leonardo Vincenti
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70124 Bari, Italy; (C.B.); (L.V.)
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Octavian Sabin Tataru
- I.O.S.U.D., George Emil Palade University of Medicine and Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Monica Rutigliano
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy; (N.A.d.M.); (D.L.); (M.R.); (M.B.); (P.D.)
- Correspondence:
| |
Collapse
|
9
|
Rodrigues D, Coyle L, Füzi B, Ferreira S, Jo H, Herpers B, Chung SW, Fisher C, Kleinjans JCS, Jennen D, de Kok TM. Unravelling Mechanisms of Doxorubicin-Induced Toxicity in 3D Human Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23031286. [PMID: 35163210 PMCID: PMC8836276 DOI: 10.3390/ijms23031286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
- Correspondence:
| | - Luke Coyle
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Barbara Füzi
- Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Sofia Ferreira
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Heeseung Jo
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Bram Herpers
- Crown Bioscience Netherlands B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands;
| | - Seung-Wook Chung
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Ciarán Fisher
- Certara UK Limited, Simcyp Division, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.J.); (T.M.d.K.)
| |
Collapse
|
10
|
Afify H, Ghoneum A, Almousa S, Abdulfattah AY, Warren B, Langsten K, Gonzalez D, Casals R, Bharadwaj M, Kridel S, Said N. Metabolomic credentialing of murine carcinogen-induced urothelial cancer. Sci Rep 2021; 11:22085. [PMID: 34764423 PMCID: PMC8585868 DOI: 10.1038/s41598-021-99746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system with increasing incidence, mortality, and limited treatment options. Therefore, it is imperative to validate preclinical models that faithfully represent BCa cellular, molecular, and metabolic heterogeneity to develop new therapeutics. We performed metabolomic profiling of premalignant and non-muscle invasive bladder cancer (NMIBC) that ensued in the chemical carcinogenesis N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model. We identified the enriched metabolic signatures that associate with premalignant and NMIBC. We found that enrichment of lipid metabolism is the forerunner of carcinogen-induced premalignant and NMIBC lesions. Cross-species analysis revealed the prognostic value of the enzymes associated with carcinogen-induced enriched metabolic in human disease. To date, this is the first study describing the global metabolomic profiles associated with early premalignant and NMIBC and provide evidence that these metabolomic signatures can be used for prognostication of human disease.
Collapse
Affiliation(s)
- Hesham Afify
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Alia Ghoneum
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sameh Almousa
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Bailey Warren
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kendall Langsten
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniela Gonzalez
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Randy Casals
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Manish Bharadwaj
- Cell Analysis Division, Agilent Technologies, Inc, Santa Clara, CA, 95051, USA
| | - Steven Kridel
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Analysis of CGF Biomolecules, Structure and Cell Population: Characterization of the Stemness Features of CGF Cells and Osteogenic Potential. Int J Mol Sci 2021; 22:ijms22168867. [PMID: 34445573 PMCID: PMC8396261 DOI: 10.3390/ijms22168867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023] Open
Abstract
Concentrated Growth Factors (CGF) represent new autologous (blood-derived biomaterial), attracting growing interest in the field of regenerative medicine. In this study, the chemical, structural, and biological characterization of CGF was carried out. CGF molecular characterization was performed by GC/MS to quantify small metabolites and by ELISA to measure growth factors and matrix metalloproteinases (MMPs) release; structural CGF characterization was carried out by SEM analysis and immunohistochemistry; CGF has been cultured, and its primary cells were isolated for the identification of their surface markers by flow cytometry, Western blot, and real-time PCR; finally, the osteogenic differentiation of CGF primary cells was evaluated through matrix mineralization by alizarin red staining and through mRNA quantification of osteogenic differentiation markers by real-time PCR. We found that CGF has a complex inner structure capable of influencing the release of growth factors, metabolites, and cells. These cells, which could regulate the production and release of the CGF growth factors, show stem features and are able to differentiate into osteoblasts producing a mineralized matrix. These data, taken together, highlight interesting new perspectives for the use of CGF in regenerative medicine.
Collapse
|
12
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
13
|
Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin's lymphoma urinary metabolite markers. Anal Bioanal Chem 2020; 412:7469-7480. [PMID: 32897412 DOI: 10.1007/s00216-020-02881-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Non-Hodgkin's lymphoma (NHL) is a cancer of the lymphatic system where the lymphoid and hematopoietic tissues are infiltrated by malignant neoplasms of B, T, and natural killer lymphocytes. Effective and less invasive methods for NHL screening are urgently needed. Herein, we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to investigate metabolic changes in non-volatile derivatized compounds from urine samples of NHL patients (N = 15) and compare them to healthy controls (N = 34). Uni- and multivariate data analysis showed 18 endogenous metabolites, including amino acids and their metabolites, sugars, small organic acids, and vitamins, as statistically significant for group differentiation. A receiver operating characteristic curve (ROC) generated from a support vector machine (SVM) algorithm-based model achieved 0.998 of predictive accuracy, displaying the potential and relevance of GC-MS-detected urinary non-volatile compounds for predictive purposes. Furthermore, a specific panel of key metabolites was also evaluated, showing similar results. All in all, our results indicate that this robust GC-MS method is an effective screening tool for NHL diagnosis and it is able to highlight different pathways of the disease. Graphical Abstract.
Collapse
|
14
|
Iliou A, Panagiotakis A, Giannopoulou AF, Benaki D, Kosmopoulou M, Velentzas AD, Tsitsilonis OE, Papassideri IS, Voutsinas GE, Konstantakou EG, Gikas E, Mikros E, Stravopodis DJ. Malignancy Grade-Dependent Mapping of Metabolic Landscapes in Human Urothelial Bladder Cancer: Identification of Novel, Diagnostic, and Druggable Biomarkers. Int J Mol Sci 2020; 21:ijms21051892. [PMID: 32164285 PMCID: PMC7084305 DOI: 10.3390/ijms21051892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality rate and prevalence worldwide; however, the clinical management of the disease remains challenging. Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal novel diagnostic and therapeutic schemes. Methods: A collection of four human UBC cell lines that critically reflect the different malignancy grades of UBC was employed; RT4 (grade I), RT112 (grade II), T24 (grade III), and TCCSUP (grade IV). They were examined using Nuclear Magnetic Resonance, Mass Spectrometry, and advanced statistical approaches, with the goal of creating new metabolic profiles that are mechanistically associated with UBC progression toward metastasis. Results: Distinct metabolic profiles were observed for each cell line group, with T24 (grade III) cells exhibiting the most abundant metabolite contents. AMP and creatine phosphate were highly increased in the T24 cell line compared to the RT4 (grade I) cell line, indicating the major energetic transformation to which UBC cells are being subjected during metastasis. Thymosin β4 and β10 were also profiled with grade-specific patterns of expression, strongly suggesting the importance of actin-cytoskeleton dynamics for UBC advancement to metastatic and drug-tolerant forms. Conclusions: The present study unveils a novel and putatively druggable metabolic signature that holds strong promise for early diagnosis and the successful chemotherapy of UBC disease.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
| | - Aristeidis Panagiotakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
| | - Aikaterini F. Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.F.G.); (A.D.V.); (I.S.P.)
| | - Dimitra Benaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
| | - Mariangela Kosmopoulou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.F.G.); (A.D.V.); (I.S.P.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece;
| | - Issidora S. Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.F.G.); (A.D.V.); (I.S.P.)
| | - Gerassimos E. Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research (NCSR) “Demokritos”, 15701 Athens, Greece;
| | - Eumorphia G. Konstantakou
- Harvard Medical School, Massachusetts General Hospital Cancer Center (MGHCC), Charlestown, MA 021004, USA;
| | - Evagelos Gikas
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
- Correspondence: (E.G.); (E.M.); (D.J.S.)
| | - Emmanuel Mikros
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.I.); (A.P.); (D.B.); (M.K.)
- Correspondence: (E.G.); (E.M.); (D.J.S.)
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15701 Athens, Greece; (A.F.G.); (A.D.V.); (I.S.P.)
- Correspondence: (E.G.); (E.M.); (D.J.S.)
| |
Collapse
|
15
|
Kouba E, Lopez-Beltran A, Montironi R, Massari F, Huang K, Santoni M, Chovanec M, Cheng M, Scarpelli M, Zhang J, Cimadamore A, Cheng L. Liquid biopsy in the clinical management of bladder cancer: current status and future developments. Expert Rev Mol Diagn 2019; 20:255-264. [PMID: 31608720 DOI: 10.1080/14737159.2019.1680284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The use of liquid biopsy on the blood from solid malignancies provides a convenient way of detecting actionable mutations, monitoring treatment response, detecting early recurrence and prognosticating outcomes. The aim of this review is to discuss the current status and future direction of serum biomarkers in the clinical management of urinary bladder cancer.Areas covered: This review provides an overview of blood liquid biopsy and bladder cancer using methods of circulating tumors cells, circulating RNA, serum metabolites and cell-free DNA. Recent clinical studies and advances in methodology are emphasized. We performed a literature search using PMC/PubMed with keywords including 'liquid biopsy', 'circulating tumor DNA', 'cell-free DNA', 'biomarkers', 'bladder cancer' 'precision medicine'. Additional articles were obtained from the cited references of key articles. An emphasis was placed on recent studies published since 2018.Expert opinion: Liquid biopsies represent a potential biomarker using cell-free DNA, metabolomic profiles of altered cellular metabolism, circulating cancer cells and RNA. Despite displaying tremendous clinical promise, the current status of the blood liquid biopsies has not reached fruition. However, future investigations should lead the evolution of liquid biomarker into clinical utility for the management of bladder cancer.
Collapse
Affiliation(s)
- Erik Kouba
- Department of Pathology, Associated Pathologists at Medical Center of Central Georgia, Macon, GA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba, Spain.,Department of Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pathology, Regenstrief Institute, Indianapolis, IN, USA
| | | | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michael Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|