1
|
Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites 2022; 12:metabo12090800. [PMID: 36144205 PMCID: PMC9506277 DOI: 10.3390/metabo12090800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 01/01/2023] Open
Abstract
Burn injury remains a significant public health issue worldwide. Metabolic derangements are a major complication of burn injury and negatively affect the clinical outcomes of severely burned patients. These metabolic aberrations include muscle wasting, hypermetabolism, hyperglycemia, hyperlactatemia, insulin resistance, and mitochondrial dysfunction. However, little is known about the impact of burn injury on the metabolome profile in skeletal muscle. We have previously shown that farnesyltransferase inhibitor (FTI) reverses burn injury-induced insulin resistance, mitochondrial dysfunction, and the Warburg effect in mouse skeletal muscle. To evaluate metabolome composition, targeted quantitative analysis was performed using capillary electrophoresis mass spectrometry in mouse skeletal muscle. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and hierarchical cluster analysis demonstrated that burn injury induced a global change in metabolome composition. FTI treatment almost completely prevented burn injury-induced alterations in metabolite levels. Pathway analysis revealed that the pathways most affected by burn injury were purine, glutathione, β-alanine, glycine, serine, and threonine metabolism. Burn injury induced a suppressed oxidized to reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio as well as oxidative stress and adenosine triphosphate (ATP) depletion, all of which were reversed by FTI. Moreover, our data raise the possibility that burn injury may lead to increased glutaminolysis and reductive carboxylation in mouse skeletal muscle.
Collapse
|
2
|
Zheng C, Wu Y, Liang ZH, Pi JS, Cheng SB, Wei WZ, Liu JB, Lu LZ, Li CF, Zhang H. Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos). Anim Biosci 2021; 35:224-235. [PMID: 34474531 PMCID: PMC8738941 DOI: 10.5713/ab.21.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Zhen Hua Liang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Jin Song Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | - Shi Bin Cheng
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| | | | - Jing Bo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Feng Li
- Hubei Shendan Healthy Food Co..Ltd, Anlu, 432600, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, 430064, China
| |
Collapse
|
3
|
Gisewhite S, Stewart IJ, Beilman G, Lusczek E. Urinary metabolites predict mortality or need for renal replacement therapy after combat injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:119. [PMID: 33757577 PMCID: PMC7988986 DOI: 10.1186/s13054-021-03544-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Traditionally, patient risk scoring is done by evaluating vital signs and clinical severity scores with clinical intuition. Urinary biomarkers can add objectivity to these models to make risk prediction more accurate. We used metabolomics to identify prognostic urinary biomarkers of mortality or need for renal replacement therapy (RRT). Additionally, we assessed acute kidney injury (AKI) diagnosis, injury severity score (ISS), and AKI stage. METHODS Urine samples (n = 82) from a previous study of combat casualties were evaluated using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Chenomx software was used to identify and quantify urinary metabolites. Metabolite concentrations were normalized by urine output, autoscaled, and log-transformed. Partial least squares discriminant analysis (PLS-DA) and statistical analysis were performed. Receiver operating characteristic (ROC) curves were used to assess prognostic utility of biomarkers for mortality and RRT. RESULTS Eighty-four (84) metabolites were identified and quantified in each urine sample. Of these, 11 were identified as drugs or drug metabolites and excluded. The PLS-DA models for ISS and AKI diagnosis did not have acceptable model statistics. Therefore, only mortality/RRT and AKI stage were analyzed further. Of 73 analyzed metabolites, 9 were significantly associated with mortality/RRT (p < 0.05) and 11 were significantly associated with AKI stage (p < 0.05). 1-Methylnicotinamide was the only metabolite to be significantly associated (p < 0.05) with all outcomes and was significantly higher (p < 0.05) in patients with adverse outcomes. Elevated lactate and 1-methylnicotinamide levels were associated with higher AKI stage and mortality and RRT, whereas elevated glycine levels were associated with patients who survived and did not require RRT, or had less severe AKI. ROC curves for each of these metabolites and the combined panel had good predictive value (lactate AUC = 0.901, 1-methylnicotinamide AUC = 0.864, glycine AUC = 0.735, panel AUC = 0.858). CONCLUSIONS We identified urinary metabolites associated with AKI stage and the primary outcome of mortality or need for RRT. Lactate, 1-methylnicotinamide, and glycine may be used as a panel of predictive biomarkers for mortality and RRT. 1-Methylnicotinamide is a novel biomarker associated with adverse outcomes. Additional studies are necessary to determine how these metabolites can be utilized in clinically-relevant risk prediction models.
Collapse
Affiliation(s)
- Sarah Gisewhite
- Department of Surgery, University of Minnesota, 515 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Greg Beilman
- Department of Surgery, University of Minnesota, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Zhang Y, Zhu Z, Li H, Zhu M, Peng X, Xin A, Qu R, He W, Fu J, Sun X. Resolvin E1 in Follicular Fluid Acts as a Potential Biomarker and Improves Oocyte Developmental Competence by Optimizing Cumulus Cells. Front Endocrinol (Lausanne) 2020; 11:210. [PMID: 32373069 PMCID: PMC7176900 DOI: 10.3389/fendo.2020.00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic profile of follicular fluid (FF) has been investigated to look for biomarkers for oocyte quality. Resolvin E1 (RvE1), a potent pro-resolving mediator, was reported to have protective action in cell function. The study aimed to examine the predictive value of RvE1 for oocyte quality and to explore the cellular mechanism of RvE1 in improving oocyte competence. Metabolic profiles of 80 FF samples showed a higher level of RvE1 in group A (blastocysts scored ≥ B3BC and B3CB according to Gardner's blastocyst scoring system, N = 36) than that of group B (blastocysts scored < B3BC and B3CB, N = 44, P = 0.0018). The receiver operating characteristic (ROC) curve analysis showed that RvE1 level in FF below 8.96 pg/ml (AUC:0.75; 95%CI: 0.64-0.86; P = 0.00012) could predict poor oocyte quality with specificity of 97.22%, suggesting RvE1 as a potential biomarker to exclude inferior oocytes. Besides, the level of RvE1 was found to be significantly lower in FF than in serum (57.49 to 17.62 pg/ml; P=.0037) and was gradually accumulated in the culture medium of cumulus cells (CCs) during cell culture, which indicated that RvE1 came from both blood exudates and local secretion. The in vitro experiment revealed thecellular mechanism of RvE1 in improvingoocyte qualityby decreasing the cumulus cellapoptotic rate and increasing cell viability and proliferation. It is the first time thatthe role of RvE1 in reproduction is explored. In conclusion, RvE1 is valuable as a potential exclusive biomarker for oocyte selection andplays a role in improving oocyte quality.
Collapse
Affiliation(s)
- Yijing Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhongyi Zhu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - He Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiandong Peng
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Aijie Xin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Ronggui Qu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Wen He
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- *Correspondence: Jing Fu
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Xiaoxi Sun
| |
Collapse
|