1
|
Baltrusch KL, Torres MD, Domínguez H. Characterization, ultrafiltration, depolymerization and gel formulation of ulvans extracted via a novel ultrasound-enzyme assisted method. ULTRASONICS SONOCHEMISTRY 2024; 111:107072. [PMID: 39362034 PMCID: PMC11483303 DOI: 10.1016/j.ultsonch.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
Sea lettuce, or Ulva spp., dominates global algal biomass and significantly contributes to "green tides.", representing a sustainable source for biomaterials. This study explores an innovative ultrasound-enzyme assisted extraction method with the novel Cellic® CTEC3 enzyme cocktail, applied for the first time in Ulva spp. succesfully enhancing ulvan release and extraction efficiency. Various processing methods, including ultrafiltration and dialysis, were employed to achieve higher ulvan purity. Dialyzation of ulvan resulted in a more purified product with a carbohydrate content up to 55.34 %, a sulfate content up to 21 %, and no glucose contamination. Liquid extracts were fractionated through ultrafiltration, with a 3 kDa MWCO yielding 93.51 % ulvan precipitate, representing 50.28 % of the total extractable ulvan. Sequential ultrafiltration concentrated ulvans but only partially modified their molecular weight distribution. Depolymerization using microwave and H2O2 shifted ulvans towards lower molecular weights, reducing high molecular weight residue. HPSEC confirmed pH-dependent aggregation behavior, with all isolated ulvans having molecular weights above 786 kDa. Hydrolysis methods were compared, with 2-hour 1 M TFA hydrolysis at 121 °C providing the best monosaccharide profile of ulvan. FTIR and NMR analyses showed preservation of sulfation. Rheology indicated biopolymeric behavior and stable gel formation. Ulvans demonstrated nutraceutical potential, being suitable for a low Na+ and high K+ diet, with a Na+:K+ ratio as low as 0.14, and were rich in Mg2+.
Collapse
Affiliation(s)
- K L Baltrusch
- CINBIO, Universidade de Vigo, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, Edificio Politécnico, As Lagoas 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, Edificio Politécnico, As Lagoas 32004 Ourense, Spain.
| | - H Domínguez
- CINBIO, Universidade de Vigo, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, Edificio Politécnico, As Lagoas 32004 Ourense, Spain
| |
Collapse
|
2
|
Li C, Wang H, Zhu B, Yao Z, Ning L. Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications. BIORESOUR BIOPROCESS 2024; 11:85. [PMID: 39237778 PMCID: PMC11377408 DOI: 10.1186/s40643-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
With the proceeding of global warming and water eutrophication, the phenomenon of green tide has garnered significant societal interest. Consequently, researchers had increasingly focused on the potential applications of green algae biomass, particularly its polysaccharides. The polysaccharide serves as the primary active constituent of green algae and has demonstrated numerous advantageous biological activities, including antioxidant, antiviral, anticoagulant, hypolipidemic and immuno-modulatory activities. The favorable bioavailability and solubility of green algae oligosaccharides are attributed to their low molecular weight. So there has been a growing interest in researching green algae polysaccharides and oligosaccharides for the utilization of marine biological resources. This review summarized the extraction, purification, chemical structure, composition, biological activity, and potential applications prospect of polysaccharides and oligosaccharides derived from green algae. The review could be helpful for expanding the applications of polysaccharides and oligosaccharides of green algae.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Limin Ning
- College of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Wang M, Zhu Z, Wu X, Cheong K, Li X, Yu W, Yao Y, Wu J, Cao Z. Bioactive Polysaccharides from Gracilaria lemaneiformis: Preparation, Structures, and Therapeutic Insights. Foods 2024; 13:2782. [PMID: 39272547 PMCID: PMC11395005 DOI: 10.3390/foods13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Gracilaria lamaneiformis, a red seaweed, is an abundant source of bioactive polysaccharides with significant health-promoting properties. Nevertheless, the broad application of G. lamaneiformis in the nutraceutical and pharmaceutical sectors remains constrained due to the absence of comprehensive data. This review provides a detailed examination of the preparation methods, structural characteristics, and biological activities of G. lamaneiformis polysaccharides (GLPs). We explore both conventional and advanced extraction techniques, highlighting the efficiency and yield improvements achieved through methods such as microwave-, ultrasonic-, and enzyme-assisted extraction. The structural elucidation of GLPs using modern analytical techniques, including high-performance liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy, is discussed, providing comprehensive insights into their molecular composition and configuration. Furthermore, we critically evaluate the diverse biological activities of GLPs, including their antioxidant, anti-inflammatory, antitumor, and gut microbiota modulation properties. This review underscores the therapeutic potential of GLPs and suggests future research directions to fully harness their health benefits.
Collapse
Affiliation(s)
- Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaocheng Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kitleong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohua Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanli Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinlin Yao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhanhui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Lesgourgues M, Latire T, Terme N, Douzenel P, Leschiera R, Lebonvallet N, Bourgougnon N, Bedoux G. Ultrasound Depolymerization and Characterization of Poly- and Oligosaccharides from the Red Alga Solieria chordalis (C. Agardh) J. Agardh 1842. Mar Drugs 2024; 22:367. [PMID: 39195483 DOI: 10.3390/md22080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.
Collapse
Affiliation(s)
- Mathilde Lesgourgues
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
- Laboratoire d'efficacité cosmétique (E-COS), Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France
| | - Philippe Douzenel
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones (LIEN), UR 4685, Université Bretagne Occidentale, 29200 Brest, France
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EMR CNRS 6076, IUEM, Université Bretagne Sud, 56000 Vannes, France
| |
Collapse
|
5
|
Oliveira WDS, Moreira BR, Rörig L, Horta PA, Treichel H, Bonomi-Barufi J. Modelling bioremediation of contaminated effluents by Ulva ohnoi. - A predictive perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123689. [PMID: 38460587 DOI: 10.1016/j.envpol.2024.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Ulva spp. are tolerant to salinity variations and exhibit easy acclimation, playing an essential role in the depollution of aquatic ecosystems precisely due to their high efficiency in absorbing and accumulating nutrients. For this reason, Ulva spp. becomes an attractive solution for recovering areas that suffer the impacts of problems such as the eutrophication of anthropogenic origin. In addition to being a promising alternative for the blue bioeconomy, it can contribute to the sustainability of economic activities in coastal areas. Therefore, the present study aimed to develop and elucidate the behavior of Ulva ohnoi using predictive surface response models. The algae were grown under different concentrations of nutrient and salinity levels, as predicted by the experimental design, and it was evaluated according to the potential of the biomass to absorb the nutrients, as well as its photosynthetic performance and biochemical parameters. Our study confirmed the high efficiency and preference of Ulva ohnoi in the absorption of nitrogen dissolved in the medium in the form of NH4+ and that salinity is an essential factor in the dynamics and speed of ammonium absorption. The absorption of orthophosphate by U. ohnoi is reverted to the culture medium when subjected to long-term cultivation. This process was more intense because of low salinity, even at conditions of availability of the compound. The 3D-models of response surfaces elucidate the behavior of Ulva ohnoi, attributing a correlation between nutrient availability and salinity and the biological behavior of the species. In view of what is exposed by these models, as well as the effects of saline distribution along the Lagoon, the following regions of the lagoon are suggested: Center-North, Center and South - as potential areas for the implementation of bioremediation projects with Ulva ohnoi.
Collapse
Affiliation(s)
- Willian da Silva Oliveira
- Pos-Graduate Program in Biology of Fungi, Algae and Plants, Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| | - Bruna Rodrigues Moreira
- Pos-Graduate Program in Biotechnology and Biosciences, Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| | - Leonardo Rörig
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| | - Paulo Antunes Horta
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - José Bonomi-Barufi
- Pos-Graduate Program in Biology of Fungi, Algae and Plants, Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil; Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Flórez-Fernández N, Rodríguez-Coello A, Latire T, Bourgougnon N, Torres MD, Buján M, Muíños A, Muiños A, Meijide-Faílde R, Blanco FJ, Vaamonde-García C, Domínguez H. Anti-inflammatory potential of ulvan. Int J Biol Macromol 2023; 253:126936. [PMID: 37722645 DOI: 10.1016/j.ijbiomac.2023.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Green seaweeds are a widespread group of marine macroalgae that could be regarded as biorenewable source of valuable compounds, in particular sulfated polysaccharides like ulvans with interesting biological properties. Among them, anti-inflammatory activity represents an interesting target, since ulvans could potentially avoid side effects of conventional therapies. However, a great variability in ulvan content, composition, structure and properties occurs depending on seaweed specie and growth and processing conditions. All these aspects should be carefully considered in order to have reproducible and well characterized products. This review presents some concise ideas on ulvan composition and general concepts on inflammation mechanisms. Then, the main focus is on the importance of adequate selection of extraction, depolymerization and purification technologies followed by an updated survey on anti-inflammatory properties of ulvans through modulation of different signaling pathways. The potential application in a number of diseases, with special emphasis on inflammaging, gut microbiota dysbiosis, wound repair, and metabolic diseases is also discussed. This multidisciplinary overview tries to present the potential of ulvans considering not only mechanistic, but also processing and applications aspects, trusting that it can aid in the development and application of this widely available and renewable resource as an efficient and versatile anti-inflammatory agent.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Arianna Rodríguez-Coello
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France; Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France.
| | - M Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain.
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| |
Collapse
|
7
|
Praiboon J, Chantorn S, Krangkratok W, Choosuwan P, La-ongkham O. Evaluating the Prebiotic Properties of Agar Oligosaccharides Obtained from the Red Alga Gracilaria fisheri via Enzymatic Hydrolysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3958. [PMID: 38068595 PMCID: PMC10708334 DOI: 10.3390/plants12233958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024]
Abstract
Currently, the demand in the food market for oligosaccharides with biological activities is rapidly increasing. In this study, agar polysaccharides from Gracilaria fisheri were treated with β-agarases and hydrolyzed to agar oligosaccharides (AOSs). High-performance anion-exchange chromatography/pulsed amperometric detection (HPAEC-PAD), Fourier-transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC), were employed to analyze the chemical characteristics of AOSs. The FT-IR spectra revealed that the enzymatic hydrolysis had no effect on specific functional groups in the AOS molecule. To investigate the prebiotic and pathogen inhibitory effects of AOSs, the influence of AOSs on the growth of three probiotic and two pathogenic bacteria was examined. The gastrointestinal tolerance of probiotics in the presence of AOSs was also investigated. AOSs enhanced the growth of Lactobacillus plantarum by 254%, and inhibited the growth of Bacillus cereus by 32.80%, and Escherichia coli by 58.94%. The highest survival rates of L. plantarum and L. acidophilus were maintained by AOSs in the presence of α-amylase and HCl under simulated gastrointestinal conditions. This study demonstrates that AOSs from G. fisheri exhibit potential as a prebiotic additive in foods.
Collapse
Affiliation(s)
- Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Chantorn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Weerada Krangkratok
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Pradtana Choosuwan
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Orawan La-ongkham
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Malvis Romero A, Picado Morales JJ, Klose L, Liese A. Enzyme-Assisted Extraction of Ulvan from the Green Macroalgae Ulva fenestrata. Molecules 2023; 28:6781. [PMID: 37836624 PMCID: PMC10574404 DOI: 10.3390/molecules28196781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Ulvan is a sulfated polysaccharide extracted from green macroalgae with unique structural and compositional properties. Due to its biocompatibility, biodegradability, and film-forming properties, as well as high stability, ulvan has shown promising potential as an ingredient of biopolymer films such as sustainable and readily biodegradable biomaterials that could replace petroleum-based plastics in diverse applications such as packaging. This work investigates the potential of Ulva fenestrata as a source of ulvan. Enzyme-assisted extraction with commercial cellulases (Viscozyme L and Cellulysin) and proteases (Neutrase 0.8L and Flavourzyme) was used for cell wall disruption, and the effect of the extraction time (3, 6, 17, and 20 h) on the ulvan yield and its main characteristics (molecular weight, functional groups, purity, and antioxidant capacity) were investigated. Furthermore, a combined process based on enzymatic and ultrasound extraction was performed. Results showed that higher extraction times led to higher ulvan yields, reaching a maximum of 14.1% dw with Cellulysin after 20 h. The combination of enzymatic and ultrasound-assisted extraction resulted in the highest ulvan extraction (17.9% dw). The relatively high protein content in U. fenestrata (19.8% dw) makes the residual biomass, after ulvan extraction, a potential protein source in food and feed applications.
Collapse
Affiliation(s)
- Ana Malvis Romero
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestraße 15, 21073 Hamburg, Germany
| | | | | | | |
Collapse
|
9
|
Jasem MK, Merai AA, Nizam AA. Characterization and in vitro antibacterial activity of sulfated polysaccharides from freshwater alga Cladophora crispata. Access Microbiol 2023; 5:acmi000537.v5. [PMID: 37601444 PMCID: PMC10436008 DOI: 10.1099/acmi.0.000537.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/11/2023] [Indexed: 08/22/2023] Open
Abstract
Barada River is characterized by an abundant growth of freshwater algae. Cladophora sp. algae have emerged as a new source of bioactive compounds. In this research Cladophora crispata was cultivated with the outdoor method, and algal sulfated polysaccharides (SPs) were extracted by an ultrasonic-assisted extraction method. After extraction, gel filtration was used to purify the crude SPs, SP compounds were determined and selected, and the effect of purified SPs as antibacterial agents was investigated. The purified extract gave two fractions (F1 and F2). The chemical components of both crude and purified SPs were then determined. The highest carbohydrate content (74.12%) and protein content (4.02%) was found in the crude extract, while the highest sulfate content (12.17%) was found in purified fraction F2, and the highest uronic acid content (18.46%) was found in purified fraction F1. Fourier transform infrared spectroscopy (FT-IR) was used to confirm that the crude extract and fractions consist of sugar, uronic acids, protein and sulfate groups. Both F1 and F2 consisted of rhamnose, galactose, xylose and ribose based on high performance liquid chromatography (HPLC) separation. Each fraction showed an inhibitory effect on Gram-positive and Gram-negative bacteria. F2 has the lowest minimum inhibitory concentration (MIC) value against Staphylococcus aureus , Bacillus anthracis , Enterobacter aerogenes and Pseudomonas aeruginosa , where its MIC values were 6, 13, 25 and 30 mg ml-1, respectively. Algae polysaccharides are of key interest due to their antibacterial properties, which has led to them being included in pharmaceutics and food applications.
Collapse
Affiliation(s)
- Mohanad Khaled Jasem
- Food Sciences Department, Faculty of Agriculture, Damascus University, Damascus, Syria
| | - Abd-Alwahab Merai
- Food Sciences Department, Faculty of Agriculture, Damascus University, Damascus, Syria
| | - Adnan Ali Nizam
- Plant Biology Department, Faculty of Science, Damascus University, Damascus, Syria
| |
Collapse
|
10
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
12
|
Sulfated Polysaccharides from Seaweed Strandings as Renewable Source for Potential Antivirals against Herpes simplex Virus 1. Mar Drugs 2022; 20:md20020116. [PMID: 35200645 PMCID: PMC8878361 DOI: 10.3390/md20020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) remains a prominent health concern widespread all over the world. The increasing genital infections by HSV-1 that might facilitate acquisition and transmission of HIV-1, the cumulative evidence that HSV-1 promotes neurodegenerative disorders, and the emergence of drug resistance signify the need for new antiviral agents. In this study, the in vitro anti-herpetic activity of sulfated polysaccharides (SPs) extracted by enzyme or hot water from seaweeds collected in France and Mexico from stranding events, were evaluated. The anti-herpetic activity evaluation of the semi-refined-polysaccharides (sr-SPs) and different ion exchange purified fractions showed a wide range of antiviral activity. Among them, the sr-SPs from the Rhodophyta Halymenia floresii showed stronger activity EC50 0.68 μg/mL with SI 1470, without cytotoxicity. Further, the antiviral activity of the sr-SPs evaluated at different treatment schemes showed a high EC50 of 0.38 μg/mL during the viral adsorption assays when the polysaccharide and the virus were added simultaneously, whilst the protection on Vero cell during the post-infection assay was effective up to 1 h. The chemical composition, FTIR and 1H NMR spectroscopic, and molecular weights of the sr-SPs from H. floresii were determined and discussed based on the anti-herpetic activity. The potential utilization of seaweed stranding as a source of antiviral compounds is addressed.
Collapse
|
13
|
Liu D, Ouyang Y, Chen R, Wang M, Ai C, El-Seedi HR, Sarker MMR, Chen X, Zhao C. Nutraceutical potentials of algal ulvan for healthy aging. Int J Biol Macromol 2022; 194:422-434. [PMID: 34826453 DOI: 10.1016/j.ijbiomac.2021.11.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Several theories for aging are constantly put forth to explain the underlying mechanisms. Oxidative stress, DNA dysfunction, inflammation, and mitochondrial dysfunction, along with the release of cytochrome c are some of these theories. Diseases such as type 2 diabetes mellitus, intestinal dysfunction, cardiovascular diseases, hepatic injury, and even cancer develop with age and eventually cause death. Ulva polysaccharides, owing to their special structures and various functions, have emerged as desirable materials for keeping healthy. These polysaccharide structures are found to be closely related to the extraction methods, seaweed strains, and culture conditions. Ulvan is a promising bioactive substance, a potential functional food, which can regulate immune cells to augment inflammation, control the activity of aging-related genes, promote tumor senescence, enhance mitochondrial function, maintain liver balance, and protect the gut microbiome from inflammatory attacks. Given the desirable physiochemical and gelling properties of ulvan, it would serve to improve the quality and shelf-life of food.
Collapse
Affiliation(s)
- Dan Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuezhen Ouyang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruoxin Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfu Wang
- Food and Nutrition Department, Providence University, Taichung 43301, Taiwan
| | - Chao Ai
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosynthesis, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Fournière M, Bedoux G, Souak D, Bourgougnon N, Feuilloley MGJ, Latire T. Effects of Ulva sp. Extracts on the Growth, Biofilm Production, and Virulence of Skin Bacteria Microbiota: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes Strains. Molecules 2021; 26:4763. [PMID: 34443349 PMCID: PMC8401615 DOI: 10.3390/molecules26164763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| |
Collapse
|
15
|
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S. Perspective on the Therapeutic Applications of Algal Polysaccharides. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:785-809. [PMID: 34305487 PMCID: PMC8294233 DOI: 10.1007/s10924-021-02231-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 05/04/2023]
Abstract
Abstract Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare. Graphic Abstract
Collapse
Affiliation(s)
- Sonal Nigam
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201 313 Uttar Pradesh India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| | - Sheetal Kaushik Bhardwaj
- Vant Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rokkayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944 Saudi Arabia
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str, 7017 Ruse, Bulgaria
| | - Murthy Chavali
- Nano Technology Research Centre (NTRC), MCETRC, and Aarshanano Composite Technologies Pvt. Ltd, Guntur, Andhra Pradesh 522 201 India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| |
Collapse
|
16
|
Fournière M, Bedoux G, Lebonvallet N, Leschiera R, Le Goff-Pain C, Bourgougnon N, Latire T. Poly- and Oligosaccharide Ulva sp. Fractions from Enzyme-Assisted Extraction Modulate the Metabolism of Extracellular Matrix in Human Skin Fibroblasts: Potential in Anti-Aging Dermo-Cosmetic Applications. Mar Drugs 2021; 19:md19030156. [PMID: 33802739 PMCID: PMC8002389 DOI: 10.3390/md19030156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but their biological activity on human dermal fibroblast extracellular matrix (ECM) is poorly reported. In this work, the regulation of ECM has been investigated for the first time at both proteomic and transcriptomic levels in normal human skin dermal fibroblasts, after 48 h of incubation with poly- and oligosaccharide fractions from Ulva sp. obtained after enzyme-assisted extraction and depolymerization. Cell proliferation enhancement (up to +68%) without exhibiting any cytotoxic effect on fibroblasts was demonstrated at 50 and 1000 µg/mL by both fractions. At the proteomic level, polysaccharide fractions at 1000 µg/mL enhanced the most the synthesis of glycosaminoglycans (GAGs, up to +57%), total collagen, especially types I (up to +217%) and III, as well as the synthesis and activity of MMP-1 (Matrix Metalloproteinase-1, up to +309%). In contrast, oligosaccharide fractions had no effect on GAGs synthesis but exhibited similarities for collagens and MMP-1 regulation. At the transcriptomic level, the decrease of COL1A1 and COL1A2 expression, and increase of COL3A1 and MMP-1 expression, confirmed the modulation of ECM metabolism by both fractions. Our research emphasizes that poly- and oligosaccharide Ulva sp. fractions exhibit interesting biological activities and supports their potential use in the area of skin renewal for anti-aging dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
- Correspondence:
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | | | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
| |
Collapse
|
17
|
Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr Polym 2020; 248:116784. [DOI: 10.1016/j.carbpol.2020.116784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
18
|
Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165488] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The species of green macroalga belonging to the genus Ulva (family: Ulvaceae) are utilized in various fields, from food supplements to biomedical applications. Ulvan, a polysaccharide obtained from various Ulva species, has shown various biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and antiviral activities. To obtain the polysaccharide ulvan that can be utilized in various fields, it is necessary to understand the critical points that affect its physicochemical nature, the extraction procedures, and the mechanism of action for biological activities. This article discusses the physicochemical properties, extraction, isolation and characterization procedures and benefits in food and biomedical applications of ulvan. In conclusion, ulvan from Ulva sp. has the potential to be used as a therapeutic agent and also as an additional ingredient in the development of tissue engineering procedures.
Collapse
|