1
|
Onan D, Özder M, Sipahi Mİ, Poyraz N, Apaydın C, Erel-Akbaba G, Akbaba H. Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches. J Biomed Mater Res B Appl Biomater 2025; 113:e35530. [PMID: 39840932 DOI: 10.1002/jbm.b.35530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations. Passive and active methods for droplet formation are discussed, as well as the manipulation of droplet shape and content. This review also highlights the potential applications of droplet microfluidics in tissue engineering, cancer therapy, and drug delivery systems. The use of microfluidics in the production of lipid nanoparticles and polymeric microparticles is also presented, with emphasis on their potential in drug delivery and biomedical research. Finally, the contributions of microfluidics to vaccines, gene therapy, personalized medicine, and future perspectives are discussed, emphasizing the need for continuous innovation and integration with other technologies, such as AI and wearable devices, to further enhance its potential in personalized medicine and drug delivery. However, it is also noted that challenges in commercialization and widespread adoption still need to be addressed.
Collapse
Affiliation(s)
- Deniz Onan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Melike Özder
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Meryem İrem Sipahi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Nazlıcan Poyraz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ceylin Apaydın
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülşah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
5
|
Damiati LA, El-Yaagoubi M, Damiati SA, Kodzius R, Sefat F, Damiati S. Role of Polymers in Microfluidic Devices. Polymers (Basel) 2022; 14:5132. [PMID: 36501526 PMCID: PMC9738615 DOI: 10.3390/polym14235132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Marwa El-Yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Safa A. Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rimantas Kodzius
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Chien PJ, Shih YL, Cheng CT, Tu HL. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions. LAB ON A CHIP 2022; 22:2540-2548. [PMID: 35667105 DOI: 10.1039/d2lc00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated. In this study, we present a reliable method for the rapid production of highly uniform phase-separated liposomes as synthetic cell models. Specifically, a microfluidics-based strategy coupled with custom reagents for generating size-tunable liposomes with various lipid compositions is presented. In addition, an important cell signaling interacting pair, the pleckstrin homology (PH) domain and PIP2 lipid, is used to demonstrate the controlled molecular assembly inside these liposomes. The result shows that PIP2 on phase-separated domains successfully recruits the PH domains to realize spatially defined molecular interactions. Such a system is versatile and can be expanded to synthesize other proteins for realizing multiplexed molecular interactions in the same liposome. Phase-separated lipid domains can also be used to recruit targeted proteins to initiate localized reactions, thus paving the way for organizing a complex signaling cascade in the synthetic cell.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Lun Shih
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chieh-Teng Cheng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| |
Collapse
|
7
|
Toyota T, Zhang Y. Identifying and Manipulating Giant Vesicles: Review of Recent Approaches. MICROMACHINES 2022; 13:644. [PMID: 35630111 PMCID: PMC9144095 DOI: 10.3390/mi13050644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
Giant vesicles (GVs) are closed bilayer membranes that primarily comprise amphiphiles with diameters of more than 1 μm. Compared with regular vesicles (several tens of nanometers in size), GVs are of greater scientific interest as model cell membranes and protocells because of their structure and size, which are similar to those of biological systems. Biopolymers and nano-/microparticles can be encapsulated in GVs at high concentrations, and their application as artificial cell bodies has piqued interest. It is essential to develop methods for investigating and manipulating the properties of GVs toward engineering applications. In this review, we discuss current improvements in microscopy, micromanipulation, and microfabrication technologies for progress in GV identification and engineering tools. Combined with the advancement of GV preparation technologies, these technological advancements can aid the development of artificial cell systems such as alternative tissues and GV-based chemical signal processing systems.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| |
Collapse
|
8
|
Sato Y, Takinoue M. Capsule-like DNA Hydrogels with Patterns Formed by Lateral Phase Separation of DNA Nanostructures. JACS AU 2022; 2:159-168. [PMID: 35098232 PMCID: PMC8790810 DOI: 10.1021/jacsau.1c00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/03/2023]
Abstract
Phase separation is a key phenomenon in artificial cell construction. Recent studies have shown that the liquid-liquid phase separation of designed-DNA nanostructures induces the formation of liquid-like condensates that eventually become hydrogels by lowering the solution temperature. As a compartmental capsule is an essential artificial cell structure, many studies have focused on the lateral phase separation of artificial lipid vesicles. However, controlling phase separation using a molecular design approach remains challenging. Here, we present the lateral liquid-liquid phase separation of DNA nanostructures that leads to the formation of phase-separated capsule-like hydrogels. We designed three types of DNA nanostructures (two orthogonal and a linker nanostructure) that were adsorbed onto an interface of water-in-oil (W/O) droplets via electrostatic interactions. The phase separation of DNA nanostructures led to the formation of hydrogels with bicontinuous, patch, and mix patterns, due to the immiscibility of liquid-like DNA during the self-assembly process. The frequency of appearance of these patterns was altered by designing DNA sequences and altering the mixing ratio of the nanostructures. We constructed a phase diagram for the capsule-like DNA hydrogels by investigating pattern formation under various conditions. The phase-separated DNA hydrogels did not only form on the W/O droplet interface but also on the inner leaflet of lipid vesicles. Notably, the capsule-like hydrogels were extracted into an aqueous solution, maintaining the patterns formed by the lateral phase separation. In addition, the extracted hydrogels were successfully combined with enzymatic reactions, which induced their degradation. Our results provide a method for the design and control of phase-separated hydrogel capsules using sequence-designed DNAs. We envision that by incorporating various DNA nanodevices into DNA hydrogel capsules, the capsules will gain molecular sensing, chemical-information processing, and mechanochemical actuating functions, allowing the construction of functional molecular systems.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8579, Japan
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
9
|
Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. J Colloid Interface Sci 2021; 611:451-461. [PMID: 34968964 DOI: 10.1016/j.jcis.2021.12.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Double emulsions with many monodispersed internal droplets are required for the fabrication of multicompartment microcapsules and tissue-like synthetic materials. These double emulsions can also help to optically resolve different coalescence mechanisms contributing to double emulsion destabilization. Up to date microfluidic double emulsions are limited to either core-shell droplets or droplets with eight or less inner droplets. By applying a two-step jet break-up within one setup, double emulsion droplets filled with up to several hundred monodispersed inner droplets can be achieved. EXPERIMENTS Modular interconnected CNC-milled Lego®-inspired blocks were used to create two separated droplet break-up points within coaxial glass capillaries. Inner droplets were formed by countercurrent flow focusing within a small inner capillary, while outer droplets were formed by co-flow in an outer capillary. The size of inner and outer droplets was independently controlled since the two droplet break-up processes were decoupled. FINDINGS With the developed setup W/O/W and O/W/O double emulsions were produced with different surfactants, oils, and viscosity modifiers to encapsulate 25-400 inner droplets in each outer drop with a volume percentage of inner phase between 7% and 50%. From these emulsions monodispersed multicompartment microcapsules were obtained. The report offers insights on the relationship between the coalescence of internal droplets and their release.
Collapse
|
10
|
Wang Z, Mao X, Wang H, Wang S, Yang Z. Fabrication of Lipid Nanotubules by Ultrasonic Drag Force. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8945-8952. [PMID: 34297899 DOI: 10.1021/acs.langmuir.1c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports a new method of fabricating lipid nanotubules using ultrasonic Stokes drag force in theory and experiment. Ultrasonic Stokes drag force generated using a planar piezoelectric ultrasonic transducer in a remotely controllable way is introduced. When ultrasonic Stokes drag force is applied on lipid vesicles, the lipid nanotubules attached can be dragged out from the lipid film. In order to demonstrate the formation mechanism of the lipid nanotubules produced by ultrasonic drag force clearly, a theoretical kinetic model is developed. In the experiments, the lipid nanotubules can be rapidly and efficiently fabricated using this ultrasonic transducer both in deionized water and NaCl solutions with different concentrations. The stretching speed of the lipid nanotubules can reach 33 μm/s, approximately 10 times faster than that of the existing methods. The formed lipid nanotubules have a diameter of 600 ± 100 nm (>80%). The length can reach the millimeter level. This work provided a remotely controllable, highly efficient, high-velocity, and solution environment-independent approach for fabricating lipid nanotubules.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hua Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shenggeng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zengtao Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
11
|
Dimitriou P, Li J, Tornillo G, McCloy T, Barrow D. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000123. [PMID: 34267927 PMCID: PMC8272004 DOI: 10.1002/gch2.202000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Indexed: 05/11/2023]
Abstract
Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jin Li
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Giusy Tornillo
- Hadyn Ellis BuildingCardiff UniversityMaindy RoadCardiffCF24 4HQUK
| | - Thomas McCloy
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - David Barrow
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
12
|
Sato Y, Suzuki Y. DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophys Physicobiol 2021; 18:116-126. [PMID: 34123692 PMCID: PMC8164909 DOI: 10.2142/biophysico.bppb-v18.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Self-assembled supramolecular structures in living cells and their dynamics underlie various cellular events, such as endocytosis, cell migration, intracellular transport, cell metabolism, and gene expression. Spatiotemporally regulated association/dissociation and generation/degradation of assembly components is one of the remarkable features of biological systems. The significant advancement in DNA nanotechnology over the last few decades has enabled the construction of various-shaped nanostructures via programmed self-assembly of sequence-designed oligonucleotides. These nanostructures can further be assembled into micrometer-sized structures, including ordered lattices, tubular structures, macromolecular droplets, and hydrogels. In addition to being a structural material, DNA is adopted to construct artificial molecular circuits capable of activating/inactivating or producing/decomposing target DNA molecules based on strand displacement or enzymatic reactions. In this review, we provide an overview of recent studies on artificially designed DNA-based self-assembled systems that exhibit dynamic features, such as association/dis-sociation of components, phase separation, stimulus responsivity, and DNA circuit-regulated structural formation. These biomacromolecule-based, bottom-up approaches for the construction of artificial molecular systems will not only throw light on bio-inspired nano/micro engineering, but also enable us to gain insights into how autonomy and adaptability of living systems can be realized.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
13
|
Litschel T, Kelley CF, Holz D, Adeli Koudehi M, Vogel SK, Burbaum L, Mizuno N, Vavylonis D, Schwille P. Reconstitution of contractile actomyosin rings in vesicles. Nat Commun 2021; 12:2254. [PMID: 33859190 PMCID: PMC8050101 DOI: 10.1038/s41467-021-22422-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. Cytoskeletal networks support and direct cell shape and guide intercellular transport, but relatively little is understood about the self-organization of cytoskeletal components on the scale of an entire cell. Here, authors use an in vitro system and observe the assembly of different types of actin networks and the condensation of membrane-bound actin into single rings.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA, USA
| | | | - Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
14
|
Seo H, Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. BIOMICROFLUIDICS 2021; 15:021301. [PMID: 33833845 PMCID: PMC8012066 DOI: 10.1063/5.0048441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in droplet microfluidics have led to the fabrication of versatile vesicles with a structure that mimics the cellular membrane. These artificial cell-like vesicles including polymersomes and liposomes effectively enclose an aqueous core with well-defined size and composition from the surrounding environment to implement various biological reactions, serving as a diverse functional reactor. The advantage of realizing various biological phenomena within a compartment separated by a membrane that resembles a natural cell membrane is actively explored in the fields of synthetic biology as well as biomedical applications including drug delivery, biosensors, and bioreactors, to name a few. In this Perspective, we first summarize various methods utilized in producing these polymersomes and liposomes. Moreover, we will highlight some of the recent advances in the design of these artificial cell-like vesicles for functional bioreactors and discuss the current issues and future perspectives.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
15
|
Bioluminescent detection of isothermal DNA amplification in microfluidic generated droplets and artificial cells. Sci Rep 2020; 10:21886. [PMID: 33318599 PMCID: PMC7736893 DOI: 10.1038/s41598-020-78996-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022] Open
Abstract
Microfluidic droplet generation affords precise, low volume, high throughput opportunities for molecular diagnostics. Isothermal DNA amplification with bioluminescent detection is a fast, low-cost, highly specific molecular diagnostic technique that is triggerable by temperature. Combining loop-mediated isothermal nucleic acid amplification (LAMP) and bioluminescent assay in real time (BART), with droplet microfluidics, should enable high-throughput, low copy, sequence-specific DNA detection by simple light emission. Stable, uniform LAMP–BART droplets are generated with low cost equipment. The composition and scale of these droplets are controllable and the bioluminescent output during DNA amplification can be imaged and quantified. Furthermore these droplets are readily incorporated into encapsulated droplet interface bilayers (eDIBs), or artificial cells, and the bioluminescence tracked in real time for accurate quantification off chip. Microfluidic LAMP–BART droplets with high stability and uniformity of scale coupled with high throughput and low cost generation are suited to digital DNA quantification at low template concentrations and volumes, where multiple measurement partitions are required. The triggerable reaction in the core of eDIBs can be used to study the interrelationship of the droplets with the environment and also used for more complex chemical processing via a self-contained network of droplets, paving the way for smart soft-matter diagnostics.
Collapse
|
16
|
Takinoue M, Kawano R. Editorial on the Special Issue on Recent Advances of Molecular Machines and Molecular Robots. MICROMACHINES 2020; 11:mi11121031. [PMID: 33255399 PMCID: PMC7760480 DOI: 10.3390/mi11121031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology (Tokyo Tech), 4259-J2-36 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Correspondence: (M.T.); (R.K.)
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
- Correspondence: (M.T.); (R.K.)
| |
Collapse
|
17
|
Cho E, Lu Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synth Biol 2020; 9:2881-2901. [PMID: 33095011 DOI: 10.1021/acssynbio.0c00433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Building an artificial cell is a research area that is rigorously studied in the field of synthetic biology. It has brought about much attention with the aim of ultimately constructing a natural cell-like structure. In particular, with the more mature cell-free platforms and various compartmentalization methods becoming available, achieving this aim seems not far away. In this review, we discuss the various types of artificial cells capable of hosting several cellular functions. Different compartmental boundaries and the mature and evolving technologies that are used for compartmentalization are examined, and exciting recent advances that overcome or have the potential to address current challenges are discussed. Ultimately, we show how compartmentalization and cell-free systems have, and will, come together to fulfill the goal to assemble a fully synthetic cell that displays functionality and complexity as advanced as that in nature. The development of such artificial cell systems will offer insight into the fundamental study of evolutionary biology and the sea of applications as a result. Although several challenges remain, emerging technologies such as artificial intelligence also appear to help pave the way to address them and achieve the ultimate goal.
Collapse
Affiliation(s)
- Eunhee Cho
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Zhao N, Chen Y, Chen G, Xiao Z. Artificial Cells Based on DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2020; 3:3928-3934. [PMID: 35025469 DOI: 10.1021/acsabm.0c00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial cells have led to many potential applications in synthetic biology and served as useful platforms to study biological phenomena. With increasing development of DNA nanotechnology, DNA-based nanostructures with various morphologies have been constructed for protein mimicking. These biomimicking elements can be assembled on cell membrane involved in various cellular activities, as well as be constructed as signaling networks inside cells. DNA nanotechnology provides an efficient approach to accomplish multiple functions, including signal recognition, transduction, and output. Here, we review a myriad of predominant studies on the construction of artificial cells based on DNA nanotechnology, including the morphological and functional mimic of membrane proteins, biosensors for monitoring the cellular microenvironment, and construction of DNA-based signal feedback networks. We also provide a comprehensive insight into DNA-based artificial cells, on the basis of current challenges and scientific requirements, which will prompt their reasonable designs in the future.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Clinical and Fundamental Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingzhi Chen
- Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Clinical and Fundamental Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Clinical and Fundamental Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Clinical and Fundamental Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Kawamura J, Kitamura H, Otake Y, Fuse S, Nakamura H. Size-Controllable and Scalable Production of Liposomes Using a V-Shaped Mixer Micro-Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Kawamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Kitamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinichiro Fuse
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
20
|
Yandrapalli N, Seemann T, Robinson T. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. MICROMACHINES 2020; 11:E285. [PMID: 32164221 PMCID: PMC7142477 DOI: 10.3390/mi11030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/25/2023]
Abstract
Liposomes and giant unilamellar vesicles (GUVs) in particular are excellent compartments for constructing artificial cells. Traditionally, their use requires bench-top vesicle growth, followed by experimentation under a microscope. Such steps are time-consuming and can lead to loss of vesicles when they are transferred to an observation chamber. To overcome these issues, we present an integrated microfluidic chip which combines GUV formation, trapping, and multiple separate experiments in the same device. First, we optimized the buffer conditions to maximize both the yield and the subsequent trapping of the vesicles in micro-posts. Captured GUVs were monodisperse with specific size of 18 ± 4 µm in diameter. Next, we introduce a two-layer design with integrated valves which allows fast solution exchange in less than 20 s and on separate sub-populations of the trapped vesicles. We demonstrate that multiple experiments can be performed in a single chip with both membrane transport and permeabilization assays. In conclusion, we have developed a versatile all-in-one microfluidic chip with capabilities to produce and perform multiple experiments on a single batch of vesicles using low sample volumes. We expect this device will be highly advantageous for bottom-up synthetic biology where rapid encapsulation and visualization is required for enzymatic reactions.
Collapse
Affiliation(s)
| | | | - Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
21
|
Kasahara Y, Sato Y, Masukawa MK, Okuda Y, Takinoue M. Photolithographic shape control of DNA hydrogels by photo-activated self-assembly of DNA nanostructures. APL Bioeng 2020; 4:016109. [PMID: 32206743 PMCID: PMC7083653 DOI: 10.1063/1.5132929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
We report a photolithographic method for the shape control of DNA hydrogels based on photo-activated self-assembly of Y-shaped DNA nanostructures (Y-motifs). To date, various methods to control the shape of DNA hydrogels have been developed to enhance the functions of the DNA hydrogel system. However, photolithographic production of shape-controlled DNA hydrogels formed through the self-assembly of DNA nanostructures without the use of radical polymerizations has never been demonstrated, although such a method is expected to be applied for the shape-control of DNA hydrogels encapsulating sensitive biomolecules, such as proteins. In this study, we used a photo-activated linker to initiate the self-assembly of Y-motifs, where the cross-linker DNA was at first inactive but was activated after UV light irradiation, resulting in the formation of shape-controlled DNA hydrogels only at the UV-exposed area produced by photomasks. We believe that this method will be applied for the construction of biohybrid machines, such as molecular robots and artificial cells that contain intelligent biomolecular devices, such as molecular sensors and computers.
Collapse
Affiliation(s)
- Yu Kasahara
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Marcos K. Masukawa
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Yukiko Okuda
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
22
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Abstract
Cells are the basic units of life, and can be mimicked to create artificial analogs enabling the investigation of cellular mechanisms under controlled conditions. Building biomimetic systems ranging from proto-cells to cell-like objects such as compartment membranes can be achieved by collecting biobricks that self-assemble to build simplified models performing specific functions. Hence, scientists can develop and optimize new synthetic cells with biological functions by taking inspiration from nature and exploiting the advantages of synthetic biology. However, the bottom-down approach is not restricted to the basic principles of biological cells, and new mimicry systems can be designed starting with a combination of living and non-living simple molecules to focus on a cellular machinery function. In recent years, microfluidic devices have been well established to engineer bioarchitecture models resembling cell-like structures involving vesicles, compartmentalization, synthetic membranes, and the chip itself as a synthetic cell. This review aims to highlight the role of biological cells and their impact on inspiring the development of biomimetic models. The combination of the principles of synthetic biology with microfluidic technology represents the newly-introduced field of synthetic cells and synthetic membranes that can be further exploited in diagnostic and therapeutic applications.
Collapse
|